Bimetallic AuPt/TiO<sub>2</sub> Catalysts for Direct Oxidation of Glucose and Gluconic Acid to Tartaric Acid in the Presence of Molecular O<sub>2</sub>
manufacture of tartaric acid remains a grand challenge in this area. To date, chemical synthesisfrom nitric acid-facilitated glucoseoxidation leads to only <10% yield with significant toxics as byproducts. We reported a one-pot aqueous-phase oxidation of glucose and gluconic acid using bimetallic AuPt/TiO2 catalysts in the presence of molecular O2, with ∼50% yield toward tartaric acid at 110 °C and
酒石酸是食品和聚合物工业中的重要工业构件。然而,酒石酸的绿色制造仍然是该领域的巨大挑战。迄今为止,由硝酸促进的葡萄糖氧化的化学合成仅产生<10%的产率,副产物具有明显的毒性。我们报道了在分子O 2存在下使用双金属AuPt / TiO 2催化剂对葡萄糖和葡萄糖酸进行一锅法水相氧化在110°C和2 MPa下,向酒石酸的收率约为50%。结构表征和密度泛函理论(DFT)计算表明,fcc Pt和bcc Au之间的晶格失配会引起纳米团簇中孪晶边界的形成和电场中的Jahn-Teller畸变。这种结构和电子的重新配置导致与催化剂表面上C═O键的π-π电子共享竞争的C-H键的σ活化作用增强。结果,在双金属AuPt / TiO 2的表面上,CH(氧化)和CC(脱羧)键的裂解反应协同发生。催化剂。因此,可以在无碱培养基中将葡萄糖和葡萄糖酸有效地转化为酒石酸。铂基双金属纳米催化剂中电场的晶格畸变增强重构可用于许多
Effect of microheterogeneous environments of CTAB, Triton X‐100, and Tween 20 on the oxidative degradation of
<scp>d</scp>
‐fructose by nanoparticles of MnO
<sub>2</sub>
作者:Jayanta K. Midya、Dinesh C. Ghosh、Biswajit Pal、Pratik K. Sen
DOI:10.1002/kin.21239
日期:——
takes place between the aqueous and micellar pseudophases and reaction occurs following Berezin's model. Binding of fructose with the surfactants in the Stern/palisade layer takes place through the ion–dipole interaction and H‐bonding while protonated MnO2 remains at the outer side of the Stern/palisade layer within the micelle. Both the enthalpy and entropy changes associated with the fructose–water interaction
Aldonic acids have already found many applications in food, pharmaceutical, and cosmetics industries and there are many new ones likely to come. One of the limiting factors, which stalls further research and uses of this broad class of sugar acids, is a lack of efficient and environmentally friendly production methods. Here we report a novel bi-enzymatic thionine-mediated PQQ-dependent glucose dehydrogenase
醛糖酸已经在食品、制药和化妆品行业发现了许多应用,并且可能还会出现许多新应用。阻碍对这一类广泛糖酸进行进一步研究和使用的限制因素之一是缺乏高效和环保的生产方法。在这里,我们报告了一种新型双酶硫氨酸介导的 PQQ 依赖性葡萄糖脱氢酶和血红素过氧化物酶系统,该系统允许高效生产醛糖酸。结构多样的醛糖,包括单糖、二糖和寡糖,可以通过这种方式氧化成相应的醛糖酸。反应在温和的条件下进行——水溶液和环境温度。由于PQQ依赖性脱氢酶的总周转数达到3.5×10 6(对于乳糖),开发的方法非常有效。这允许时空产量高达 11 g (L h) -1(对于木糖),使整个过程在工业上具有吸引力。