The lithiation of various methyl substituted isoxazoles, isothiazoles, pyrazoles, oxadiazoles, and thiadiazoles using n-butyllithium has been studied. Three types of reactions, namely, lateral lithiation, ring cleavage, and addition of butyllithium to the ring, have been found. 3,5-Dimethylisoxazole, 3-phenyl-5-methylisoxazole, 3,4-dimethyl-1,2,5-oxadiazole, 2,5-dimethyl-1,3,4-thiadiazole, 3-phenyl-5-methyl-1,2,4-oxadiazole, and 3,5-dimethyl-1,2,4-thiadiazole all undergo lateral lithiation to give the respective acetic acids after carboxylation. 1-Methyl-3,5-disubstituted pyrazoles form the 1-lithiomethyl derivatives, while 1-phenyl-3,5-disubstituted pyrazoles are converted to the 1-ortholithiophenyl-3,5-disubstituted pyrazoles. 4-Methylisothiazole is lithiated mainly at C-5, but also suffers ring cleavage to form 1-n-butylthio-2-cyanoprop-1-ene. Heteroaromatic compounds containing an N—S bond, such as 3,4-dimeth yl-1,2,5-thiadiazole, 4-methyl-5-phenyl-1,2,3-thiadiazole, and 3,5-dimethylisothiazole, undergo nucleophilic attack at sulfur with resulting ring cleavage. 3,5-Dimethylisothiazole produces 2-n-butylthiopent-2-en-4-one. 3-Methyl-5-phenyl-1,2,4-oxadiazole gave 3-methyl-5-phenyl-5-n-butyl-1,2,4-dihydroöxadiazole by addition to the azomethine bond. The results of these lithiations are discussed. 3-Methyl-5-lithiomethylisoxazole was converted to various derivatives. Nuclear magnetic resonance spectral analysis was used to establish the identity of the products.
The diformylation of the dinitriles 4 and diesters 7 with the Bredereck-Simchen reagent HC[N(CH3)2]2[OC(CH3)3] (1) under microwave irradiation give the bis-enamines 6 and 8 with dramatically reduced reaction times and improved yields compared to conventional heating. The condensation products formed can be easily converted to bis-pyrazole and bis-isoxazole derivatives 13 and 20, respectively. Methyl anthranilate reacts on prolonged heating with the orthoamide 21 to give ketene aminal 23 in low yield (8 %). Under microwave irradiation the same reagents lead to a mixture of 23 (14 %) and dihydropyrane 24 (28 %).