An efficient route to 2,3-disubstituted indoles was developed via reductive alkylation of 2-substitutedindoles using hydrogen as a clean and atom economic reductant under ambient pressure.
An initial study has been accomplished into the synthetic feasibility of the preparation of diarylcarbenium salt via the direct coupling of aryl (or heteroaryl) aldehydes and arenes (or heteroaryl analogues) in the presence of a strong organic Brønsted acid. A number of stabilized aryl or heteroaryl(3-indolyl)carbenium ions, never previously prepared in the solid state, have been isolated in excellent
Herein, we demonstrated Mn-catalyzed selective C-3 functionalization of indoles with alcohols. The developed catalyst can also furnish bis(indolyl)methanes from the same set of substrates under slightly modified reaction conditions. Mechanistic studies reveal that the C-3 functionalization of indoles is going via a borrowing hydrogen pathway. To highlight the practical utility, a diverse range of substrates