Allylation of Erythromycin Derivatives: Introduction of Allyl Substituents into Highly Hindered Alcohols
摘要:
Functionalized erythromycin 9-oxime derivatives are 6-O-allylated under mild conditions using substituted allyl tert-butyl carbonates under palladium(0) catalysis. This allylation works well where traditional ether-forming protocols function poorly. Allyl tert-butyl carbonates provide higher yields in this reaction than lesser substituted carbonates such as ethyl or isopropyl. Aryl-substituted allyl carbonates or carbamates may be employed as well and, when used, produce trans-olefinic products.
Iridium-Catalyzed Enantioselective Synthesis of α-Chiral Bicyclo[1.1.1]pentanes by 1,3-Difunctionalization of [1.1.1]Propellane
作者:Songjie Yu、Changcheng Jing、Adam Noble、Varinder K. Aggarwal
DOI:10.1021/acs.orglett.0c02017
日期:2020.7.17
3-difunctionalization of [1.1.1]propellane with Grignard reagents and allyl carbonates using iridium catalysis. This mild protocol proceeds via initial organometallic addition to [1.1.1]propellane followed by asymmetric allylic substitution, providing the products with high enantioselectivities over a broad range of substrates. Further derivatization of the products demonstrates the applicability of this method
Trimethyl Orthoacetate and Ethylene Glycol Mono-Vinyl Ether as Enolate Surrogates in Enantioselective Iridium-Catalyzed Allylation
作者:Yeshua Sempere、Erick M. Carreira
DOI:10.1002/anie.201803558
日期:2018.6.25
ether are employed in iridium‐catalyzed enantioselective allylation reactions. The method documented enables their convenient use as surrogates for silyl ketene acetals and silyl enol ethers to prepare γ,δ‐unsaturated esters and protected aldehydes with excellent enantioselectivity. The utility of this novel method has been demonstrated by its implementation in a formal enantioselective synthesis of
Preparation of quinoline-substituted carbonate and carbamate derivatives
申请人:——
公开号:US20020013468A1
公开(公告)日:2002-01-31
The invention relates to a process for preparing quinoline-substituted carbonate and carbamate compounds, which are important intermediates in the synthesis of 6-O-substituted macrolide antibiotics. The process employs metal-catalyzed coupling reactions to provide a carbonate or carbamate of formula (I) or (II) or a substrate that can be reduced to obtain the same.
The present invention discloses compounds of formula I, or pharmaceutically acceptable salts, esters, or prodrugs thereof:
which exhibit antibacterial properties. The present invention further relates to pharmaceutical compositions comprising the aforementioned compounds for administration to a subject in need of antibiotic treatment. The invention also relates to methods of treating a bacterial infection in a subject by administering a pharmaceutical composition comprising the compounds of the present invention. The invention further includes process by which to make the compounds of the present invention.
visible-light-induced photoredox/nickel dualcatalysis. The mild reaction conditions allow good compatibility of both vinyl triflates and allylic carbonates. Notably, the stereoselectivity of this synergistic cross-electrophile coupling can be tuned by an appropriate photocatalyst with a suitable triplet-state energy, providing a practical and stereodivergent means to alkene synthesis. Preliminary mechanistic