Substituent effect of a fluorine atom on the mutagenicity of nitroquinolines
摘要:
Some 16 nitroquinolines (NQs) and their fluorinated derivatives were tested for mutagenicity in Salmonella typhimurium TA100 without S9 mix to investigate the effect of fluorine-substitution on the mutagenicity. These NQs consist of 5-NQs, 5-nitroquinoline N-oxides (5-NQOs), N-methyl-5-nitroquinolinium methanesulfonates (N-Me-5-NQs) and 8-NQs, including three ortho-F-NQs, one meta-F-NQ, four para-F-NQs and four 3-F-NQs. For this purpose, eight F-NQs were newly synthesized. The data indicated that the ratio of the mutagenic activities (revertants/plate/nmol) of fluorinated NQs to those of the corresponding parent non-fluorinated compounds ranged from 0.6- to 119-fold. The fluorine atom located para to the nitro group markedly enhanced the mutagenicity (24-fold and more), while three ortho-fluorinated derivatives showed no significant increase in mutagenicity (enhancement ratio were 0.6, 0.8 and 1.7). With respect to 8-NQs, its meta-fluorinated derivative also had an enhanced mutagenicity over the parent compound (53-fold). In addition, although N-Me-5-NQ was less mutagenic than 5-NQ and 5-NQO, the mutagenicity of N-Me-5-NQ was most significantly enhanced by fluorine-substitution. These results suggest that introduction of a fluorine atom to the molecule in question may be a useful tool to modify their mutagenic potency and to better understand the mechanism of mutation. (C) 1999 Elsevier Science B.V. All rights reserved.
Some 16 nitroquinolines (NQs) and their fluorinated derivatives were tested for mutagenicity in Salmonella typhimurium TA100 without S9 mix to investigate the effect of fluorine-substitution on the mutagenicity. These NQs consist of 5-NQs, 5-nitroquinoline N-oxides (5-NQOs), N-methyl-5-nitroquinolinium methanesulfonates (N-Me-5-NQs) and 8-NQs, including three ortho-F-NQs, one meta-F-NQ, four para-F-NQs and four 3-F-NQs. For this purpose, eight F-NQs were newly synthesized. The data indicated that the ratio of the mutagenic activities (revertants/plate/nmol) of fluorinated NQs to those of the corresponding parent non-fluorinated compounds ranged from 0.6- to 119-fold. The fluorine atom located para to the nitro group markedly enhanced the mutagenicity (24-fold and more), while three ortho-fluorinated derivatives showed no significant increase in mutagenicity (enhancement ratio were 0.6, 0.8 and 1.7). With respect to 8-NQs, its meta-fluorinated derivative also had an enhanced mutagenicity over the parent compound (53-fold). In addition, although N-Me-5-NQ was less mutagenic than 5-NQ and 5-NQO, the mutagenicity of N-Me-5-NQ was most significantly enhanced by fluorine-substitution. These results suggest that introduction of a fluorine atom to the molecule in question may be a useful tool to modify their mutagenic potency and to better understand the mechanism of mutation. (C) 1999 Elsevier Science B.V. All rights reserved.