摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

5-nitro-1-(p-tolyl)-1H-indole | 1379454-75-7

中文名称
——
中文别名
——
英文名称
5-nitro-1-(p-tolyl)-1H-indole
英文别名
5-nitro-1-p-tolyl-1H-indole;1-(4-Methylphenyl)-5-nitroindole;1-(4-methylphenyl)-5-nitroindole
5-nitro-1-(p-tolyl)-1H-indole化学式
CAS
1379454-75-7
化学式
C15H12N2O2
mdl
——
分子量
252.272
InChiKey
HUAYANZQBOTYBD-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.9
  • 重原子数:
    19
  • 可旋转键数:
    1
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.07
  • 拓扑面积:
    50.8
  • 氢给体数:
    0
  • 氢受体数:
    2

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    5-硝基二氢吲哚4-碘甲苯caesium carbonatecopper(II) oxide 作用下, 以 二甲基亚砜 为溶剂, 反应 8.0h, 以80%的产率得到5-nitro-1-(p-tolyl)-1H-indole
    参考文献:
    名称:
    利用二氧化铜作为可循环催化剂,由吲哚啉/二氢吲哚羧酸经芳构化然后进行C–N交叉偶联反应,可有效合成N-取代的吲哚
    摘要:
    通过将二氢吲哚/二氢吲哚羧酸芳构化,然后在作为可回收催化剂的纳米CuO Cs 2 CO 3的存在下,与各种芳基卤化物进行C–N交叉偶联,开发了一种新的且优雅的合成1-取代的吲哚的方案。在80°C下用作DMSO的碱。得到的1-取代的吲哚的收率高至优异,催化体系最多可循环使用四个循环而不会损失催化活性。
    DOI:
    10.1016/j.tetlet.2012.04.012
点击查看最新优质反应信息

文献信息

  • Scope, Kinetics, and Mechanism of “On Water” Cu Catalysis in the C-N Cross-Coupling Reactions of Indole Derivatives
    作者:Vrunda Malavade、Manish Patil、Mahendra Patil
    DOI:10.1002/ejoc.201901542
    日期:2020.2.7
    Cu(I)/phenanthroline catalyzed C–N cross coupling reactions of indole derivatives in the aqueous and DME/H2O solvent systems are faster than the reactions performed in organic solvents (DME). Theoretical calculations show that water can induce rate acceleration by stabilizing the transition state of the rate‐determining oxidative addition step through hydrogen‐bonding interactions.
    在水性和DME / H 2 O溶剂体系中,Cu(I)/菲咯啉催化的吲哚衍生物的C–N交叉偶联反应比在有机溶剂(DME)中进行的反应更快。理论计算表明,水可以通过氢键相互作用来稳定决定速率的氧化加成步骤的过渡态,从而诱导速率加速。
  • Green synthesis of predominant (111) facet CuO nanoparticles: Heterogeneous and recyclable catalyst for N-arylation of indoles
    作者:Nikhil V. Suramwar、Sanjay R. Thakare、Nandkishor N. Karade、Niren T. Khaty
    DOI:10.1016/j.molcata.2012.03.017
    日期:2012.7
    Well faceted CuO nanoparticles were synthesized by thermal-assisted green strategy at reflux temperature in a short period of time. A possible growth mechanism of such highly faceted nanostructures based on typical biomolecule-crystal interactions in aqueous solution is tentatively proposed. The large surface area (223.36 m(2)/g) and rich exposed active sites are expected to endow such nanostructures with excellent performances in catalysis as demonstrated here for remarkable catalytic activity with respect to the N-arylation of indoles. Nanoparticles were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Both the activity and selectivity of the N-arylation reactions could be tuned by varying the concentration of CuO nanoparticles. Nanoparticles catalyst were recycled and reused for further catalytic reactions with minimal loss in activity. A variety of indole derivatives afforded corresponding N-arylation product with excellent yields (up to 98%). (C) 2012 Elsevier B.V. All rights reserved.
  • An efficient synthesis of N-substituted indoles from indoline/indoline carboxylic acid via aromatization followed by C–N cross-coupling reaction by using nano copper oxide as a recyclable catalyst
    作者:K. Harsha Vardhan Reddy、G. Satish、K. Ramesh、K. Karnakar、Y.V.D. Nageswar
    DOI:10.1016/j.tetlet.2012.04.012
    日期:2012.6
    new and elegant protocol for the synthesis of 1-substituted indoles was developed via aromatization of indoline/indoline carboxylic acid followed by C–N cross-coupling with various aryl halides in the presence of nano CuO as a recyclable catalyst, Cs2CO3 as a base in DMSO at 80 °C. 1-Substituted indoles were obtained in good to excellent yields and the catalytic system can be recycled up to four cycles
    通过将二氢吲哚/二氢吲哚羧酸芳构化,然后在作为可回收催化剂的纳米CuO Cs 2 CO 3的存在下,与各种芳基卤化物进行C–N交叉偶联,开发了一种新的且优雅的合成1-取代的吲哚的方案。在80°C下用作DMSO的碱。得到的1-取代的吲哚的收率高至优异,催化体系最多可循环使用四个循环而不会损失催化活性。
查看更多