摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

5-methoxyoxepan-2-one | 331475-13-9

中文名称
——
中文别名
——
英文名称
5-methoxyoxepan-2-one
英文别名
(S)-5-methoxy-2-oxepanone;(5S)-5-Methoxyoxepan-2-one
5-methoxyoxepan-2-one化学式
CAS
331475-13-9
化学式
C7H12O3
mdl
——
分子量
144.17
InChiKey
NQRGBOLZXZXADW-LURJTMIESA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.5
  • 重原子数:
    10
  • 可旋转键数:
    1
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.86
  • 拓扑面积:
    35.5
  • 氢给体数:
    0
  • 氢受体数:
    3

反应信息

  • 作为反应物:
    描述:
    5-methoxyoxepan-2-onesodium methylate 生成 methyl (4R)-4-methoxy-6-[(2R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyl]oxyhexanoate
    参考文献:
    名称:
    TASCHNER, MICHAEL J.;BLACK, DONALD J., J. AMER. CHEM. SOC., 110,(1988) N 20, C. 6892-6893
    摘要:
    DOI:
  • 作为产物:
    描述:
    4-甲氧基环己酮葡萄糖氧气 、 Escherichia coli whole cell expressing Baeyer-Villiger monooxygenase from Fusarium sp. NBRC 109816 作用下, 以 aq. phosphate buffer 为溶剂, 以61 %的产率得到5-methoxyoxepan-2-one
    参考文献:
    名称:
    利用来自镰刀菌的 Baeyer-Villiger 单加氧酶高度对映选择性合成内酯的可持续方法
    摘要:
    Baeyer-Villiger 单加氧酶 (BVMO) 是一种黄素依赖性酶,利用大气中的氧气催化氧化反应,对于各种应用都很有价值。在这项研究中,我们采用了一种来自真菌 sp. 的新型 BVMO。 NBRC 109816, (BVMO) 用于合成多种手性内酯。该酶表现出与多种环酮的广泛底物相容性。此外,制备规模反应也成功进行,得到的手性内酯收率高达91%,对映体过量()值高达99%()。
    DOI:
    10.1016/j.tet.2024.133875
点击查看最新优质反应信息

文献信息

  • New Bioorganic Reagents:  Evolved Cyclohexanone MonooxygenaseWhy Is It More Selective?
    作者:Margaret M. Kayser、Christopher M. Clouthier
    DOI:10.1021/jo061349t
    日期:2006.10.1
    Four mutants of the cyclohexanone monooxygenase (CHMO) evolved as catalysts for Baeyer-Villiger oxidation of 4-hydroxycyclohexanone were investigated as catalysts for a variety of 4-substituted and 4,4-disubstituted cyclohexanones. Several excellent catalytic matches (mutant/substrate) were identified. The most important, however, is the finding that, in a number of cases, a mutant with a single exchange, Phe432Ser, was shown to be as robust and more selective as a catalyst than the wild-type CHMO. All biotransformations were performed on a laboratory scale, allowing full characterization of the products. The absolute configurations of two products were established. A model suggesting a possible role of the 432 serine residue in enantioselectivity control is proposed.
  • Increasing the enantioselectivity of cyclopentanone monooxygenase (CPMO): profile of new CPMO mutants
    作者:Christopher M. Clouthier、Margaret M. Kayser
    DOI:10.1016/j.tetasy.2006.10.001
    日期:2006.10
    A series of cyclohexanones substituted at the 4-position with a selection of hydrophobic and hydrophilic groups were used as substrates in the evaluation of six new cyclopentanone monooxygenase (CPMO) mutants. These mutants were obtained through evolutionary modifications in two specific regions of the CPMO's putative active site. Several mutant enzymes with improved enantioselectivity were identified. Analysis of the results, in terms of a diamond model, illustrates how a family of cyclohexanone substrates may be used to explore putative active sites of Baeyer-Villiger monooxygenases (BVMOs) and to design productive mutations for specific substrates. (c) 2006 Elsevier Ltd. All rights reserved.
  • The enzymatic Baeyer-Villiger oxidation: enantioselective synthesis of lactones from mesomeric cyclohexanones
    作者:Michael J. Taschner、Donald J. Black
    DOI:10.1021/ja00228a053
    日期:1988.9
  • Asymmetric Baeyer−Villiger Oxidations of 4-Mono- and 4,4-Disubstituted Cyclohexanones by Whole Cells of Engineered <i>Escherichia </i><i>c</i><i>oli</i>
    作者:Marko D. Mihovilovic、Gang Chen、Shaozhao Wang、Brian Kyte、Fernande Rochon、Margaret M. Kayser、Jon D. Stewart
    DOI:10.1021/jo001292p
    日期:2001.2.1
    Whole cells of an Escherichia coli strain that overexpresses Acinetobacter sp. NCIB 9871 cyclohexanone monooxygenase have been used for the Baeyer-Villiger oxidations of a variety of 4-mono- and 4,4-disubstituted cyclohexanones. In cases where comparisons were possible, this new biocatalytic reagent provided lactones with chemical yields and optical purities that were comparable to those obtained from the purified enzyme or a strain of bakers' yeast that expresses the same enzyme. The efficient production of cyclohexanone monooxygenase in the E. coli expression system (ca. 30% of total soluble protein) allowed these oxidations to reach completion in approximately half the time required for the engineered bakers' yeast strain. Surprisingly, 4,4-disubstituted cyclohexanones were also accepted by the enzyme, and the enantioselectivities of these oxidations could be rationalized by considering the conformational energies of bound substrates along with the enzyme's intrinsic enantioselectivity. The enzyme expressed in E. coli cells also oxidized several 4-substituted cyclohexanones bearing polar substituents, often with high enantioselectivities. In the case of 4-iodocyclohexanone the lactone was obtained in > 98% ee and its absolute configuration was assigned by X-ray crystallography. The crystal belongs to the monoclinic P2(1) space group with a = 5.7400(10), b = 6.1650(10), c = 11.377(2) Angstrom, b = 99.98(2)degrees, and Z = 2. Taken together, these results demonstrate the utility of an engineered bacterial strain in delivering useful chiral building blocks in an experimentally simple manner.
  • Directed Evolution as a Method To Create Enantioselective Cyclohexanone Monooxygenases for Catalysis in Baeyer–Villiger Reactions
    作者:Manfred T. Reetz、Birgit Brunner、Toni Schneider、Frank Schulz、Christopher M. Clouthier、Margaret M. Kayser
    DOI:10.1002/anie.200460272
    日期:2004.8.6
查看更多