Investigation of the Scope of a New Route to ABCD-Bilanes and ABCD-Porphyrins
摘要:
A new route to bilanes and porphyrins bearing four distinct meso substituents has been studied to elucidate the scope and gain entry to previously inaccessible compounds. The route entails (i) synthesis of a 1-bromo-19-acylbilane by acid-catalyzed condensation of a 1-acyldipyrromethane and a 9-bromodipyrromethane-1-carbinol and (ii) intramolecular cyclization of the 1-bromo-19-acylbilane in the presence of a metal salt (MgBr2, 3 mol equiv) and a non-nucleophilic base (DBU, 10 mol equiv) in a noncoordinating solvent (toluene) at 115 degrees C exposed to air to afford the corresponding magnesium(II) porphyrin. In this study, two sets of bilanes were initially prepared to explore substituent effects. In the first set, all bilanes vary only in the nature of the substituent at the 10-position. In the second set, all bilanes vary only in the nature of the substituent attached to the acyl unit (the 20-position). The substituents examined at the 10- and 20-positions include alkyl, aryl (electron-rich, electron-deficient, hindered), heteroaryl, ester, or no substituent (-H). The bilanes were obtained in 35-87% yield, and the target porphyrins in up to 60% yield. Further study of the scope focused on bilanes and porphyrins bearing three heterocyclic substituents (o-, m-, p-pyridyl) or four alkyl groups (ethyl, propyl, butyl, pentyl), in which case microwave irradiation was used for the porphyrin-forming step. Altogether, 17 bilanes and 19 porphyrins were prepared and characterized. In summary, the new route provides access to meso-substituted bilanes and porphyrins for which access is limited via other methods.
Rational Syntheses of Porphyrins Bearing up to Four Different Meso Substituents
作者:Polisetti Dharma Rao、Savithri Dhanalekshmi、Benjamin J. Littler、Jonathan S. Lindsey
DOI:10.1021/jo000882k
日期:2000.11.1
using EtMgBr and an acid chloride has been refined. A new procedure for the preparation of unsymmetrical diacyl dipyrromethanes has been developed that involves (1) monoacylation with EtMgBr and a pyridyl benzothioate followed by (2) introduction of the second acyl unit upon reaction with EtMgBr and an acid chloride. The scope of these acylation methods has been examined by preparing multigram quantities
Direct Synthesis of Palladium Porphyrins from Acyldipyrromethanes
作者:Duddu S. Sharada、Ana Z. Muresan、Kannan Muthukumaran、Jonathan S. Lindsey
DOI:10.1021/jo050120v
日期:2005.4.1
multistep synthesis which requires a 2e- + 2H+ reduction per each 1-acyldipyrromethane (4e- + 4H+ overall) followed by a 6e- + 6H+ oxidation. The analogous reaction of a 1,9-diacyldipyrromethane and a dipyrromethane also gives the palladium porphyrin. Seven palladium porphyrins have been prepared in yields of 25−57%. The direct route also can be used with Cu(OAc)2·H2O to give the copper porphyrin albeit
Metal complexation of 1-acyldipyrromethanes and porphyrins formed therefrom
申请人:Lindsey S. Jonathan
公开号:US20060142562A1
公开(公告)日:2006-06-29
A first aspect of the invention is a method of making a porphyrin-metal complex, comprising: (a) providing a first reagent selected from the group consisting of 1-acyldipyrromethanes, 1-acyldipyrrins, dipyrromethane-1-carbinols 1,9-diacyldipyrromethanes and 1,9-diacyldipyrrins; and then (b) condensing the first reagent with either itself (in the case of 1-acyldipyrromethanes, 1-acyldipyrrins, and dipyrromethane-1-carbinols) or a dipyrromethane (in the case of 1,9-diacyldipyrromethanes and 1,9-diacyldipyrrins) in a reaction mixture comprising a solvent and a second reagent selected from the group consisting of palladium and copper complexes to produce the porphyrin-metal complex (with the metal being palladium or copper). In preferred embodiments of the foregoing, the reaction mixture further comprises a base such as KOH or NaH.
Investigation of the Scope of a New Route to ABCD-Bilanes and ABCD-Porphyrins
作者:Dilek Kiper Dogutan、Jonathan S. Lindsey
DOI:10.1021/jo8010396
日期:2008.9.1
A new route to bilanes and porphyrins bearing four distinct meso substituents has been studied to elucidate the scope and gain entry to previously inaccessible compounds. The route entails (i) synthesis of a 1-bromo-19-acylbilane by acid-catalyzed condensation of a 1-acyldipyrromethane and a 9-bromodipyrromethane-1-carbinol and (ii) intramolecular cyclization of the 1-bromo-19-acylbilane in the presence of a metal salt (MgBr2, 3 mol equiv) and a non-nucleophilic base (DBU, 10 mol equiv) in a noncoordinating solvent (toluene) at 115 degrees C exposed to air to afford the corresponding magnesium(II) porphyrin. In this study, two sets of bilanes were initially prepared to explore substituent effects. In the first set, all bilanes vary only in the nature of the substituent at the 10-position. In the second set, all bilanes vary only in the nature of the substituent attached to the acyl unit (the 20-position). The substituents examined at the 10- and 20-positions include alkyl, aryl (electron-rich, electron-deficient, hindered), heteroaryl, ester, or no substituent (-H). The bilanes were obtained in 35-87% yield, and the target porphyrins in up to 60% yield. Further study of the scope focused on bilanes and porphyrins bearing three heterocyclic substituents (o-, m-, p-pyridyl) or four alkyl groups (ethyl, propyl, butyl, pentyl), in which case microwave irradiation was used for the porphyrin-forming step. Altogether, 17 bilanes and 19 porphyrins were prepared and characterized. In summary, the new route provides access to meso-substituted bilanes and porphyrins for which access is limited via other methods.