Rationalizing the Origin of Solerone (5-Oxo-4-hexanolide): Biomimetic Synthesis and Identification of Key Metabolites in Sherry Wine
摘要:
A biomimetic synthesis of solerone (5-oxo-4-hexanolide, 1) using both enzymatic and acid-catalyzed reactions was performed. Starting from L-glutamic acid 5-ethyl ester (2) enzymatic oxidative deamination followed by subsequent decarboxylation of the corresponding 2-oxoglutaric acid Ei-ethyl ester (3) led to ethyl 4-oxobutanoate (4). In the presence of pyruvate, 4 served as key substrate for a novel acyloin condensation catalyzed by pyruvate decarboxylase (EC 4.1.1.1) from Saccharomyces cerevisiae. Finally, the resulting ethyl 4-hydroxy-5-oxo-hexanoate (5) was easily converted into solerone (1) in the presence of acid. The acyloin condensation of 3 with acetaldehyde to ethyl 5-hydroxy-4-oxohexanoate (6) revealed an alternative route to solerone (1). Acid-catalyzed lactonization of 6 produced 4-oxo-5-hexanolide (7) as well as 5 and 1 via keto-enol tautomerization. Confirming the relevance of the proposed biogenetic pathway, the solerone precursors 2-6 as well as delta-lactone 7 were identified in sherry by GC/MS analysis for the first time.
Rationalizing the Origin of Solerone (5-Oxo-4-hexanolide): Biomimetic Synthesis and Identification of Key Metabolites in Sherry Wine
摘要:
A biomimetic synthesis of solerone (5-oxo-4-hexanolide, 1) using both enzymatic and acid-catalyzed reactions was performed. Starting from L-glutamic acid 5-ethyl ester (2) enzymatic oxidative deamination followed by subsequent decarboxylation of the corresponding 2-oxoglutaric acid Ei-ethyl ester (3) led to ethyl 4-oxobutanoate (4). In the presence of pyruvate, 4 served as key substrate for a novel acyloin condensation catalyzed by pyruvate decarboxylase (EC 4.1.1.1) from Saccharomyces cerevisiae. Finally, the resulting ethyl 4-hydroxy-5-oxo-hexanoate (5) was easily converted into solerone (1) in the presence of acid. The acyloin condensation of 3 with acetaldehyde to ethyl 5-hydroxy-4-oxohexanoate (6) revealed an alternative route to solerone (1). Acid-catalyzed lactonization of 6 produced 4-oxo-5-hexanolide (7) as well as 5 and 1 via keto-enol tautomerization. Confirming the relevance of the proposed biogenetic pathway, the solerone precursors 2-6 as well as delta-lactone 7 were identified in sherry by GC/MS analysis for the first time.
COMPOSITION FOR TREATING SULFUR MUSTARD TOXICITY AND METHODS OF USING SAME
申请人:Varma Shambhu D.
公开号:US20090048153A1
公开(公告)日:2009-02-19
One embodiment of the present invention provides a composition, comprising, in amounts effective to treat sulfur mustard or half sulfur mustard induced toxicity or skin damage: an agent that inhibits alkylation of —SH and >NH protein groups; an agent that reduces —SS— to SH; a scavenger of reactive oxygen species; a substrate that maintains tissue reduction-oxidation status; an agent that protects against invading inflammatory cells and associated oxidative stress; an antagonist of prostaglandin synthesis; and an agent that induces tissue regeneration. Methods of using the composition are also provided.
METHOD OF PREPARING CREATINE ESTER SALTS AND USES THEREOF.
申请人:Ferguson Chris
公开号:US20080103202A1
公开(公告)日:2008-05-01
This invention discloses the method of preparation of creatine ester-salts. Creatine is an extremely popular ergogenic aid, and is found most often in the form of creatine monohydrate. Creatine monohydrate is poorly soluble in water however and while esters gain solubility, there functionality is greatly decreased. The material can be administered in a variety of ways including capsules, tablets, powdered beverages, bars, gels, liquids, liposomes or drinks.
Process for preparation of alpha-ketoglutaric acid
申请人:Zhang Guoji
公开号:US20120095261A1
公开(公告)日:2012-04-19
A process for preparation of α-ketoglutaric acid, which is adapted for preparing L-arginine α-ketoglutarate 1:1 and 2:1, comprising the steps of: (a) reacting methyl dichloroacetate and acrylic acid methyl ester with sodium methoxide to obtain dimethyl 2,2-dichloroglutarate; (b) reacting the dimethyl 2,2-dichloroglutarate from step (a) with hydroxide solution to obtain crude α-ketoglutaratic acid aqueous solution; (c) purifying the crude α-ketoglutaratic acid aqueous solution to obtain purified α-ketoglutaratic acid aqueous solution; and (d) adjusting a concentration of the purified α-ketoglutaratic acid aqueous solution by adding water, thereby a yield of the purified α-ketoglutaratic acid aqueous solution is approximately 75%. While avoiding the use of massive organic solvents, the process of the present invention has a remarkable high yield to realize mass production with low manufacturing cost and shortened production time.
Method of Preparing Creatine Ester Salts and Uses Thereof
申请人:Ferguson Chris
公开号:US20080254198A1
公开(公告)日:2008-10-16
This invention discloses the method of preparation of creatine ester-salts. Creatine is an extremely popular ergogenic aid, and is found most often in the form of creatine monohydrate. Creatine monohydrate is poorly soluble in water however and while esters gain solubility, there functionality is greatly decreased. The material can be administered in a variety of ways including capsules, tablets, powdered beverages, bars, gels, liquids, liposomes or drinks.