Bifunctional conjugates with potent inhibitory activity towards cyclooxygenase and histone deacetylase
摘要:
We herein disclose a series of compounds with potent inhibitory activities towards histone deacetylases (HDAC) and cyclooxygenases (COX). These compounds potently inhibited the growth of cancer cell lines consistent with their anti-COX and anti-HDAC activities. While compound 2b showed comparable level of COX-2 selectivity as celecoxib, compound lib outperformed indomethacin in terms of selectivity towards COX-2 relative to COX-1. An important observation with our lead compounds (2b, 8, 11b, and 17b) is their enhanced cytotoxicity towards androgen dependent prostate cancer cell line (LNCaP) relative to androgen independent prostate cancer cell line (DU-145). Interestingly, compounds 2b and 17b arrested the cell cycle progression of LNCaP in the S-phase, while compound 8 showed a G0/G1 arrest, similar to SAHA. Relative to SAHA, these compounds displayed tumor-selective cytotoxicity as they have low anti-proliferative activity towards healthy cells (VERO); an attribute that makes them attractive candidates for drug development. (C) 2016 Elsevier Ltd. All rights reserved.
Bifunctional conjugates with potent inhibitory activity towards cyclooxygenase and histone deacetylase
摘要:
We herein disclose a series of compounds with potent inhibitory activities towards histone deacetylases (HDAC) and cyclooxygenases (COX). These compounds potently inhibited the growth of cancer cell lines consistent with their anti-COX and anti-HDAC activities. While compound 2b showed comparable level of COX-2 selectivity as celecoxib, compound lib outperformed indomethacin in terms of selectivity towards COX-2 relative to COX-1. An important observation with our lead compounds (2b, 8, 11b, and 17b) is their enhanced cytotoxicity towards androgen dependent prostate cancer cell line (LNCaP) relative to androgen independent prostate cancer cell line (DU-145). Interestingly, compounds 2b and 17b arrested the cell cycle progression of LNCaP in the S-phase, while compound 8 showed a G0/G1 arrest, similar to SAHA. Relative to SAHA, these compounds displayed tumor-selective cytotoxicity as they have low anti-proliferative activity towards healthy cells (VERO); an attribute that makes them attractive candidates for drug development. (C) 2016 Elsevier Ltd. All rights reserved.
Methods and compositions for diagnostic and therapeutic targeting of COX-2
申请人:Marnett J. Lawrence
公开号:US20070292352A1
公开(公告)日:2007-12-20
The presently disclosed subject matter provides compositions that selectively bind cyclooxygenase-2 and comprise a therapeutic and/or diagnostic moiety. Also provided are methods for using the disclosed compositions for diagnosing (i.e., by imaging) a target cell and/or treating a disorder associated with a cyclooxygenase-2 biological activity.
METHODS AND COMPOSITIONS FOR DIAGNOSTIC AND THERAPEUTIC TARGETING OF COX-2
申请人:Marnett Lawrence J.
公开号:US20130052138A1
公开(公告)日:2013-02-28
The presently disclosed subject matter provides compositions that selectively bind cyclooxygenase-2 and comprise a therapeutic and/or diagnostic moiety. Also provided are methods for using the disclosed compositions for diagnosing (i.e., by imaging) a target cell and/or treating a disorder associated with a cyclooxygenase-2 biological activity.
Solid-Phase Parallel Synthesis of Dual Histone Deacetylase-Cyclooxygenase Inhibitors
作者:Luisa M. Bachmann、Maria Hanl、Felix Feller、Laura Sinatra、Andrea Schöler、Jens Pietzsch、Markus Laube、Finn K. Hansen
DOI:10.3390/molecules28031061
日期:——
Since both histone deacetylases (HDACs) and cyclooxygenase-2 (COX-2) are known to be overexpressed in several cancer types, we herein report the design, synthesis, and biological evaluation of a library of dual HDAC-COX inhibitors. The designed compounds were synthesized via an efficient parallel synthesis approach using preloaded solid-phase resins. Biological in vitro assays demonstrated that several
Diazen-1-ium-1,2-diolated nitric oxide donor ester prodrugs of 1-(4-methanesulfonylphenyl)-5-aryl-1H-pyrazol-3-carboxylic acids: Synthesis, nitric oxide release studies and anti-inflammatory activities
作者:Khaled R.A. Abdellatif、Morshed Alam Chowdhury、Ying Dong、Edward E. Knaus
DOI:10.1016/j.bmc.2008.05.028
日期:2008.7.1
A new group of hybrid nitric oxide-releasing anti-inflammatory drugs (NONO-coxibs) wherein an O(2)-acetoxymethyl-1-(N-ethyl-N-methylamino)diazen-1-ium-1,2-diolate (11a-c) NO-donor moiety is attached directly to the carboxylic acid group of 1-(4-methanesulfonylphenyl)-5-aryl-1H-pyrazol-3-carboxylic acids were synthesized. The diazen-1-ium-1,2-diolate compounds 11a-c all released a low amount of NO upon incubation with phosphate buffer (PBS) at pH 7.4 (7.7-9.3% range). In comparison, the percentage of NO released was significantly higher (67.5-73.6% of the theoretical maximal release of two molecules of NO/molecule of the parent hybrid ester prodrug) when the diazen-1-ium-1,2-diolate ester prodrugs were incubated in the presence of rat serum. These incubation studies suggest that both NO and the anti-inflammatory 1-(4-methanesulfonylphenyl)-5-(4-H, 4-F or 4-Me-phenyl)-1H-pyrazol-3- carboxylic acid (9a-c) would be released from the parent NONO-coxib upon in vivo cleavage by non-specific serum esterases. The 1-(4-methanesulfonylphenyl)-5-(4-H, 4-F or 4-Me-phenyl)-1H-pyrazol-3- carboxylic acids (9a-c) exhibited AI activities (ID(50) = 85.2-104.4 mg/kg po range) between that exhibited by the reference drugs aspirin (ID(50) = 128.7 mg/kg po) and celecoxib (ID(50) = 10.8 mg/kg po). Hybrid ester anti-inflammatory/NO-donor prodrugs (NONO-coxibs) offers a potential drug design concept targeted toward the development of anti-inflammatory drugs that are devoid of adverse ulcerogenic and/or cardiovascular effects. (c) 2008 Elsevier Ltd. All rights reserved.