摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4,7-bis(3,3-didecyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-6-yl)-2,1,3-benzoselenadiazole | 1234785-22-8

中文名称
——
中文别名
——
英文名称
4,7-bis(3,3-didecyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-6-yl)-2,1,3-benzoselenadiazole
英文别名
4,7-Bis(3,3-didecyl-2,4-dihydrothieno[3,4-b][1,4]dioxepin-6-yl)-2,1,3-benzoselenadiazole;4,7-bis(3,3-didecyl-2,4-dihydrothieno[3,4-b][1,4]dioxepin-6-yl)-2,1,3-benzoselenadiazole
4,7-bis(3,3-didecyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-6-yl)-2,1,3-benzoselenadiazole化学式
CAS
1234785-22-8
化学式
C60H96N2O4S2Se
mdl
——
分子量
1052.53
InChiKey
DUXSHSMQTNJXGT-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    19.78
  • 重原子数:
    69
  • 可旋转键数:
    38
  • 环数:
    6.0
  • sp3杂化的碳原子比例:
    0.77
  • 拓扑面积:
    119
  • 氢给体数:
    0
  • 氢受体数:
    8

反应信息

  • 作为产物:
    描述:
    2,1,3-苯并噻二唑 在 selenium(IV) oxide 、 bis-triphenylphosphine-palladium(II) chloride 、 sodium tetrahydroborate 、 氢溴酸 作用下, 以 乙醇甲苯 为溶剂, 生成 4,7-bis(3,3-didecyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-6-yl)-2,1,3-benzoselenadiazole
    参考文献:
    名称:
    Donor−Acceptor Polymer Electrochromes with Tunable Colors and Performance
    摘要:
    To demonstrate the effect of donor (D) and acceptor (A) units on the structure property relationships of electrochromic polymers, design, synthesis, characterization and polymerization of a series of D A type systems, 1-5, based on thiophene, 3,4-ethylenedioxythiophene, and 3,3-didecyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine as D units and 2,1,3-benzoselenadiazole, 2,1,3-benzothiadiazole and 2-decyl-2H-benzo[d][1,2,3]triazole as A units are highlighted. It is found that these units play key roles on the redox behavior, band gap, neutral state color, and the electrochromic performance (stability, optical contrast, coloration efficiency, and switching time) of the system. It is noted that electropolymerization of these D-A systems provides processable low band gap electrochromes, P1-P5, exhibiting high redox stability, coloration efficiency, transmittance and/or contrast ratio and low response time. Furthermore, P1-P5 reflect various hues of blue and green pallets of the RGB color-space in the neutral state. In particular, it is noteworthy that P5 is an excellent blue-to-colorless polymeric electrochrome, which, to our best knowledge, exhibits the highest optical contrast and coloration efficiency among the D A type systems. The panoramic breadth of the neutral state colors and intriguing features of these polymeric materials further confirm that D A approach allows engineering tunable electrochromes, which hold promise for commercialization of polymeric ROB electrochromics.
    DOI:
    10.1021/cm100805g
点击查看最新优质反应信息

文献信息

  • A new soluble neutral state black electrochromic copolymer via a donor–acceptor approach
    作者:Merve İçli、Melek Pamuk、Fatih Algı、Ahmet M. Önal、Atilla Cihaner
    DOI:10.1016/j.orgel.2010.05.001
    日期:2010.7
    Two donor-acceptor systems, 2-decyl-4,7-bis(3,3-didecyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-6-yl)-2H-benzo[d][1,2,3]triazole (1) and 4,7-bis(3,3-didecyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-6-yl)-2,1,3-benzoselenadiazole (2) are explored in order to attain a low bandgap black polymer electrochrome, which is highly difficult to attain due to the complexity of designing such materials. Electrochemical polymerization of 1 and 2 in 1:4 monomer feed ratio was performed in a mixture of acetonitrile and dichloromethane solution containing 0.1 M tetrabutylammonium hexafluorophosphate. It was found that electropolymerization provides a processable neutral state black copolymer, (P(1-co-2)), which absorbs virtually the whole visible spectrum (400-800 nm). (P(1-co-2)) is the first low bandgap (1.45 eV) electropolymerized material, which switches from black color (L = 14.3, a = 0.29, b = 0.35) in the neutral state to transmissive grey (L = 39.2, a = 0.29, b = 0.33) in the oxidized state with 15.3% of the transmittance change at 522 nm. Furthermore, it exhibits excellent operational and/or environmental stability under ambient conditions. (c) 2010 Elsevier B.V. All rights reserved.
  • Donor−Acceptor Polymer Electrochromes with Tunable Colors and Performance
    作者:Merve İçli、Melek Pamuk、Fatih Algi、Ahmet M. Önal、Atilla Cihaner
    DOI:10.1021/cm100805g
    日期:2010.7.13
    To demonstrate the effect of donor (D) and acceptor (A) units on the structure property relationships of electrochromic polymers, design, synthesis, characterization and polymerization of a series of D A type systems, 1-5, based on thiophene, 3,4-ethylenedioxythiophene, and 3,3-didecyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine as D units and 2,1,3-benzoselenadiazole, 2,1,3-benzothiadiazole and 2-decyl-2H-benzo[d][1,2,3]triazole as A units are highlighted. It is found that these units play key roles on the redox behavior, band gap, neutral state color, and the electrochromic performance (stability, optical contrast, coloration efficiency, and switching time) of the system. It is noted that electropolymerization of these D-A systems provides processable low band gap electrochromes, P1-P5, exhibiting high redox stability, coloration efficiency, transmittance and/or contrast ratio and low response time. Furthermore, P1-P5 reflect various hues of blue and green pallets of the RGB color-space in the neutral state. In particular, it is noteworthy that P5 is an excellent blue-to-colorless polymeric electrochrome, which, to our best knowledge, exhibits the highest optical contrast and coloration efficiency among the D A type systems. The panoramic breadth of the neutral state colors and intriguing features of these polymeric materials further confirm that D A approach allows engineering tunable electrochromes, which hold promise for commercialization of polymeric ROB electrochromics.
查看更多