Immunosuppressive but Non-LasR-Inducing Analogues of the Pseudomonas aeruginosa Quorum-Sensing Molecule N-(3-Oxododecanoyl)-l-homoserine Lactone
摘要:
The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)-l-homoserine lactone (1) is involved not only in bacterial activation but also in subversion of the host immune system, and this compound might thus be used as a template to design immunosuppressive agents, provided derivatives devoid of quorum-sensing activity could be discovered. By use of a leukocyte proliferation assay and a newly developed bioluminescent P. aeruginosa reporter assay, systematic modification of 1 allowed us to delineate the bacterial LasR-induction and host immunosuppressive activities. The main determinant is replacement of the methylene group proximal to the beta-ketoamide in the acyl chain of 1 with functions containing heteroatoms, especially an NH group. This modification can be combined with replacement of the homoserine lactone system in 1 with stable cyclic groups. For example, we found the simple compound N(1)-(5-chloro-2-hydroxyphenyl)-N(3)-octylmalonamide (25d) to be over twice as potent as 1 as an immune suppressor while displaying LasR-induction antagonist activity.
Immunosuppressive but Non-LasR-Inducing Analogues of the Pseudomonas aeruginosa Quorum-Sensing Molecule N-(3-Oxododecanoyl)-l-homoserine Lactone
摘要:
The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)-l-homoserine lactone (1) is involved not only in bacterial activation but also in subversion of the host immune system, and this compound might thus be used as a template to design immunosuppressive agents, provided derivatives devoid of quorum-sensing activity could be discovered. By use of a leukocyte proliferation assay and a newly developed bioluminescent P. aeruginosa reporter assay, systematic modification of 1 allowed us to delineate the bacterial LasR-induction and host immunosuppressive activities. The main determinant is replacement of the methylene group proximal to the beta-ketoamide in the acyl chain of 1 with functions containing heteroatoms, especially an NH group. This modification can be combined with replacement of the homoserine lactone system in 1 with stable cyclic groups. For example, we found the simple compound N(1)-(5-chloro-2-hydroxyphenyl)-N(3)-octylmalonamide (25d) to be over twice as potent as 1 as an immune suppressor while displaying LasR-induction antagonist activity.
INHIBITORS OF BIOFILM FORMATION OF GRAM-POSITIVE AND GRAM-NEGATIVE BACTERIA
申请人:Ammendola Aldo
公开号:US20090192192A1
公开(公告)日:2009-07-30
The present invention relates to the use of compounds as broad spectrum inhibitors of bacterial biofilm formation. In particular the invention refers to a family of compounds that block the quorum sensing system of Gram-negative and Gram-positive bacteria, a process for their manufacture, pharmaceutical compositions containing them and to their use for the treatment and prevention of bacterial damages and diseases, in particular for diseases where there is an advantage in inhibiting quorum sensing regulated phenotypes of pathogens.