Novel aryl- and heteroarylpiperazines, use of these compounds as pharmaceutical compositions, pharmaceutical compositions comprising the compounds, and a method of treatment employing these compounds and compositions. The compounds show a high and selective binding affinity to the histamine H3 receptor indicating histamine H3 receptor antagonistic, inverse agonistic or agonistic activity. As a result, the compounds are useful for the treatment of diseases and disorders related to the histamine H3 receptor.
Novel aryl- and heteroarylpiperazines, use of these compounds as pharmaceutical compositions, pharmaceutical compositions comprising the compounds, and a method of treatment employing these compounds and compositions. The compounds show a high and selective binding affinity to the histamine H3 receptor indicating histamine H3 receptor antagonistic, inverse agonistic or agonistic activity. As a result, the compounds are useful for the treatment of diseases and disorders related to the histamine H3 receptor.
[EN] NOVEL ARYL- AND HETEROARYLPIPERAZINES<br/>[FR] NOUVELLES ARYL- ET HETEROARYLPIPERAZINES
申请人:NOVO NORDISK AS
公开号:WO2003066604A2
公开(公告)日:2003-08-14
Novel aryl- and heteroarylpiperazines, use of these compounds as pharmaceutical compositions, pharmaceutical compositions comprising the compounds, and a method of treatment employing these compounds and compositions. The compounds show a high and selective binding affinity to the histamine H3 receptor indicating histamine H3 receptor antagonistic, inverse agonistic or agonistic activity. As a result, the compounds are useful for the treatment of diseases and disorders related to the histamine H3 receptor.
2-(4-Alkylpiperazin-1-yl)quinolines as a New Class of Imidazole-Free Histamine H<sub>3</sub> Receptor Antagonists
With the aim of identifying structurally novel, centrally acting histamine H(3) antagonists, a series of 2-(4-alkylpiperazin-1-yl)quinolines was prepared. Systematic variation of the substituents led to highly potent histamine H(3) antagonists with low polar surface area and appropriate log P for blood-brain barrier penetration.