摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

8,11,14,17,20,23-hexaoxacyclotetracos-1-ene-3,5-diyne | 185378-92-1

中文名称
——
中文别名
——
英文名称
8,11,14,17,20,23-hexaoxacyclotetracos-1-ene-3,5-diyne
英文别名
1,4,7,10,13,16-Hexaoxacyclotetracos-18-ene-20,22-diyne;1,4,7,10,13,16-hexaoxacyclotetracos-18-en-20,22-diyne
8,11,14,17,20,23-hexaoxacyclotetracos-1-ene-3,5-diyne化学式
CAS
185378-92-1
化学式
C18H26O6
mdl
——
分子量
338.401
InChiKey
QLBXHCMJYPOOSZ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.4
  • 重原子数:
    24
  • 可旋转键数:
    0
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.67
  • 拓扑面积:
    55.4
  • 氢给体数:
    0
  • 氢受体数:
    6

反应信息

  • 作为产物:
    参考文献:
    名称:
    Synthesis and Metal Ion Binding Studies of Enediyne-Containing Crown Ethers
    摘要:
    The 3-ene-1,5-diyne crown ether 5 is a novel enediyne-containing crown ether that was designed as a model system for a class of enediynes that might undergo alkali metal ion-triggered Bergman cyclization. We report the preparation of 5 by two different routes. In the shorter and preferable route, a carbenoid coupling reaction is employed to simultaneously construct the enediyne moiety and effect a macrocyclization of an acyclic bis(propargyl)bromide 15 to the 24-membered crown ether 5. Under standard reaction conditions, this carbenoid coupling produces as the major product the isomeric 5-ene-1,3-diyne-crown ethers (Z)-16 and (E)-16. The formation of 5-ene-1,3-diynes from the carbenoid coupling of propargyl bromides is unprecedented. We present evidence that it is the polyether nature of dibromide 15 that leads to the formation of the 5-ene-1,3-diyne-crown ether products. Judicious control of the reaction conditions can be used to produce either 5 or (Z)-16 from 15 in synthetically useful yields. Both enediyne-crown ethers 5 and (Z)-16 bind alkali metal ions, as evidenced by their ability to extract alkali metal picrates into organic solvents. Enediyne-crown ether 5 undergoes Bergman cyclization at 135 degrees C in DMSO/1,4-cyclohexadiene to produce the known o-xylyl crown ether 4. Crown ether 5 represents an enediyne in which molecular recognition of alkali metals might serve as a trigger for Bergman cyclization.
    DOI:
    10.1021/jo961583r
点击查看最新优质反应信息

文献信息

  • Synthesis and Metal Ion Binding Studies of Enediyne-Containing Crown Ethers
    作者:Mark M. McPhee、Sean M. Kerwin
    DOI:10.1021/jo961583r
    日期:1996.1.1
    The 3-ene-1,5-diyne crown ether 5 is a novel enediyne-containing crown ether that was designed as a model system for a class of enediynes that might undergo alkali metal ion-triggered Bergman cyclization. We report the preparation of 5 by two different routes. In the shorter and preferable route, a carbenoid coupling reaction is employed to simultaneously construct the enediyne moiety and effect a macrocyclization of an acyclic bis(propargyl)bromide 15 to the 24-membered crown ether 5. Under standard reaction conditions, this carbenoid coupling produces as the major product the isomeric 5-ene-1,3-diyne-crown ethers (Z)-16 and (E)-16. The formation of 5-ene-1,3-diynes from the carbenoid coupling of propargyl bromides is unprecedented. We present evidence that it is the polyether nature of dibromide 15 that leads to the formation of the 5-ene-1,3-diyne-crown ether products. Judicious control of the reaction conditions can be used to produce either 5 or (Z)-16 from 15 in synthetically useful yields. Both enediyne-crown ethers 5 and (Z)-16 bind alkali metal ions, as evidenced by their ability to extract alkali metal picrates into organic solvents. Enediyne-crown ether 5 undergoes Bergman cyclization at 135 degrees C in DMSO/1,4-cyclohexadiene to produce the known o-xylyl crown ether 4. Crown ether 5 represents an enediyne in which molecular recognition of alkali metals might serve as a trigger for Bergman cyclization.
查看更多