Anticancer activity of 3-O-acyl and alkyl-(−)-epicatechin derivatives
摘要:
By changing the structure or replacing the gallate group of (-)-ECG, 3-O-acyl and alkyl-(-)-epicatechin derivatives were synthesized to be screen as anticancer agents using the MTT assay in vitro against cancer cell lines (PC3, SKOV3, U373MG). 3-O-Acyl and alkyl-(-)-epicatechin derivatives (4-25) exhibited better anticancer activity than (-)-ECG and specially, compounds 6-8, 17-19, which were modified aliphatic chains with moderate sizes (C8-C12) showed strong anticancer activity (IC50 = 6.4-31.2 muM). The introduction of an alkyloxy group on 3-O-hydroxyl instead of an acyloxy group significantly enhanced inhibitory activity. Consequently, the compound that showed the most potency as anticancer agents were 3-O-decyl-(-)-epicatechin (18) (IC50 = 8.9, 7.9, 6.4 muM against PC3, SKOV3, U373MG, respectively), which modified the appropriate lipophilic group on the C-3 hydroxyl as an alkyloxy group. (C) 2004 Elsevier Ltd. All rights reserved.
Epicatechin conjugated with fatty acid is a potent inhibitor of DNA polymerase and angiogenesis
摘要:
Anti-cancer and anti-angiogenesis effects of green tea catechins have been demonstrated. It has been found that chemical modification of tea catechins improves their biological activities. We examined the chemical modification of epicatechin enhanced anti-cancer and anti-angiogenic effects. Epicatechin conjugated with fatty acid (acyl-catechin) strongly inhibited DNA polymerase activity, HL-60 cancer cell growth and angiogenesis. Epicatechin conjugated with palmitic acid ((2.R,3R)-3',4',5,7-tetrahydroxyflavan-3-yl hexadecanoate, epicatechin-C16) was the strongest inhibitor in DNA polymerase alpha, beta, lambda and angiogenesis assays. Epicatechin-C16 also suppressed human endothelial cell (HUVEC) tube formation on reconstituted basement membrane, suggesting that it affected not only DNA polymerase activity but also the signal transduction pathways needed for the tube formation in HUVECs. These results suggest that acylation of epicatechin is an effective chemical modification to improve the anti-cancer activity of epicatechin. (c) 2007 Elsevier Inc. All rights reserved.