摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4-nitrophenyl 2-deoxy-2-hydroxyacetamido-β-D-glucopyranoside | 52222-90-9

中文名称
——
中文别名
——
英文名称
4-nitrophenyl 2-deoxy-2-hydroxyacetamido-β-D-glucopyranoside
英文别名
p-nitrophenyl 2-deoxy-2-glycoloylamido-β-D-glucopyranoside
4-nitrophenyl 2-deoxy-2-hydroxyacetamido-β-D-glucopyranoside化学式
CAS
52222-90-9
化学式
C14H18N2O9
mdl
——
分子量
358.305
InChiKey
BXYGDOWRCZYSDD-DKTYCGPESA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -2.11
  • 重原子数:
    25.0
  • 可旋转键数:
    6.0
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    171.62
  • 氢给体数:
    5.0
  • 氢受体数:
    9.0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    4-nitrophenyl 2-deoxy-2-hydroxyacetamido-β-D-glucopyranoside 在 β-N-acetylhexosaminidase from Talaromyces flavus CCF 2686 作用下, 以 phosphate buffer 、 乙腈 为溶剂, 反应 1.67h, 以78%的产率得到p-nitrophenyl 2-deoxy-2-glycoloylamido-β-D-glucopyranosyl-(1->4)-2-deoxy-2-glycoloylamido-β-D-glucopyranoside
    参考文献:
    名称:
    β- N-乙酰基己糖胺酶催化N-酰基修饰的底物的水解和转糖基化反应
    摘要:
    35种真菌β- N-乙酰基己糖胺酶与对硝基苯基2-氨基-2-脱氧-β-d-吡喃葡萄糖苷及其4种N-酰基衍生物(CHO,COCH 2 OH,COCH 2 CH 3的水解和转糖基化能力),COCF 3)作为底物进行了测试。的四种新型制备p硝基苯基二糖从由酶催化的这些非天然底物的米曲霉,草酸青霉和踝节菌属菌代表了相当大的扩展糖苷酶的合成潜力。
    DOI:
    10.1016/j.tet.2003.10.111
  • 作为产物:
    参考文献:
    名称:
    Metabolism of Vertebrate Amino Sugars with N-Glycolyl Groups
    摘要:
    The O-GlcNAc modification involves the attachment of single beta-O-linked N-acetylglucosamine residues to serine and threonine residues of nucleocytoplasmic proteins. Interestingly, previous biochemical and structural studies have shown that O-GlcNAcase (OGA), the enzyme that removes O-GlcNAc from proteins, has an active site pocket that tolerates various N-acyl groups in addition to the N-acetyl group of GlcNAc. The remarkable sequence and structural conservation of residues comprising this pocket suggest functional importance. We hypothesized this pocket enables processing of metabolic variants of O-GlcNAc that could be formed due to inaccuracy within the metabolic machinery of the hexosamine biosynthetic pathway. In the accompanying paper (Bergfeld, A. K., Pearce, O. M., Diaz, S. L., Pham, T., and Varki, A. (2012) J. Biol. Chem. 287, 28865-28881), N-glycolylglucosamine (GlcNGc) was shown to be a catabolite of NeuNGc. Here, we show that the hexosamine salvage pathway can convert GlcNGc to UDP-GlcNGc, which is then used to modify proteins with O-GlcNGc. The kinetics of incorporation and removal of O-GlcNGc in cells occur in a dynamic manner on a time frame similar to that of O-GlcNAc. Enzymatic activity of O-GlcNAcase (OGA) toward a GlcNGc glycoside reveals OGA can process glycolyl-containing substrates fairly efficiently. A bacterial homolog (BtGH84) of OGA, from a human gut symbiont, also processes O-GlcNGc substrates, and the structure of this enzyme bound to a GlcNGc-derived species reveals the molecular basis for tolerance and binding of GlcNGc. Together, these results demonstrate that analogs of GlcNAc, such as GlcNGc, are metabolically viable species and that the conserved active site pocket of OGA likely evolved to enable processing of mis-incorporated analogs of O-GlcNAc and thereby prevent their accumulation. Such plasticity in carbohydrate processing enzymes may be a general feature arising from inaccuracy in hexosamine metabolic pathways.
    DOI:
    10.1074/jbc.m112.363721
点击查看最新优质反应信息