The invention relates to a method of detecting and/or assaying nucleoside hydrolases or nucleoside phosphorylases using a chromogenic substrate. Preferred chromogenic substrates have formula (I) where X is OH, or H, and Y is the residue of Y—OH where Y—OH is a chromophore or a compound readily converted to a chromophore and the substrates are hydrolysed by the nucleoside hydrolase to yield ribose or 2-deoxyribose plus Y—OH. Alternatively those substrates may be phosphorylysed by nucleoside phosphorylase to yield ribose-1-phosphate plus Y—OH. The methods may be used to detect and/or assay parasites in biological samples.
The invention relates to a method of detecting and/or assaying nucleoside hydrolases or nucleoside phosphorylases using a chromogenic substrate. Preferred chromogenic substrates have formula (I) where X is OH, or H, and Y is the residue of Y—OH where Y—OH is a chromophore or a compound readily converted to a chromophore and the substrates are hydrolysed by the nucleoside hydrolase to yield ribose or 2-deoxyribose plus Y—OH. Alternatively those substrates may be phosphorylysed by nucleoside phosphorylase to yield ribose-1-phosphate plus Y—OH. The methods may be used to detect and/or assay parasites in biological samples.
1
This invention provides new methods for detecting enzyme activity using enzyme substrates comprising an enzyme cleavable portion and a chromogenic portion. The enzyme cleavable portion is a &bgr;-D-ribofuranosyl group and the chromogenic portion forms a detectable indicator following enzyme cleavage. In one aspect of this invention the chromogenic &bgr;-D-ribofuranoside substrate forms a coloured substantially non-diffusable indicator. A second aspect of this invention provides novel chromogenic &bgr;-D-ribofuranosides.