Photoactivable deoxyadenosine mimic, 3-deaza-3-nitro-2'-deoxyadetiosine (2), was prepared using two different synthetic routes. The first route involved base catalyzed glycosylation of 3-deaza-3-nitroadenine, which was prepared by regioselective nitration of 3-deazaadenine. In the second route, the convertible nucleoside 6-O-(2,4,6-trimethylphenyl)-3-deaza-2'-deoxyadenosine (28) was used to introduce 6-NH2 group in the last step. (c) 2005 Elsevier Ltd. All rights reserved.
Photoactivable deoxyadenosine mimic, 3-deaza-3-nitro-2'-deoxyadetiosine (2), was prepared using two different synthetic routes. The first route involved base catalyzed glycosylation of 3-deaza-3-nitroadenine, which was prepared by regioselective nitration of 3-deazaadenine. In the second route, the convertible nucleoside 6-O-(2,4,6-trimethylphenyl)-3-deaza-2'-deoxyadenosine (28) was used to introduce 6-NH2 group in the last step. (c) 2005 Elsevier Ltd. All rights reserved.
A new photocleavable 2'-deoxyadenosine mimic, 3-nitro-3-deaza-2'-deoxyadenosine (NidA), was prepared and introduced into DNA fragments via its 6-O-trimethylphenyl precursor phophoramidite. Photocleavage of the resulting oligonucleotide is highly efficient in single and double strands. Hybridization properties of NidA are very similar to those of deoxyadenosine.