Probe compound for detecting and isolating enzymes and means and methods using the same
申请人:Helmholtz-Zentrum für Infektionsforschung GmbH
公开号:EP2230312A1
公开(公告)日:2010-09-22
The present invention relates to a probe compound that can comprise any substrate or metabolite of an enzymatic reaction in addition to an indicator component, such as, for example, a fluorescence dye, or the like. Moreover, the present invention relates to means for detecting enzymes in form of an array, which comprises any number of probe compounds of the invention which each comprise a different metabolite of interconnected metabolites representing the central pathways in all forms of life. Moreover, the present invention relates to a method for detecting enzymes involving the application of cell extracts or the like to the array of the invention which leads to reproducible enzymatic reactions with the substrates. These specific enzymatic reactions trigger the indicator (e.g. a fluorescence signal) and bind the enzymes to the respective cognate substrates. Moreover, the invention relates to means for isolating enzymes in form of nanoparticles coated with the probe compound of the invention. The immobilisation of the cognate substrates or metabolites on the surface of nanoparticles by means of the probe compounds allows capturing and isolating the respective enzyme, e.g. for subsequent sequencing.
Compositions and methods for modeling saccharomyces cerevisiae metabolism
申请人:The Regents of The University of California
公开号:EP2463654A1
公开(公告)日:2012-06-13
The invention provides an in silica model for determining a S. cerevisiae physiological function. The model includes a data structure relating a plurality of S. cerevisiae reactants to a plurality of S. cerevisiae reactions, a constraint set for the plurality of S. cerevisiae reactions, and commands for determining a distribution of flux through the reactions that is predictive of a S. cerevisiae physiological function. A model of the invention can further include a gene database containing information characterizing the associated gene or genes. The invention further provides methods for making an in silica S. cerevisiae model and methods for determining a S. cerevisiae physiological function using a model of the invention. The invention provides an in silica model for determining a S. cerevisiae physiological function. The model includes a data structure relating a plurality of S. cerevisiae reactants to a plurality of S. cerevisiae reactions, a constraint set for the plurality of S. cerevisiae reactions, and commands for determining a distribution of flux through the reactions that is predictive of a S. cerevisiae physiological function. A model of the invention can further include a gene database containing information characterizing the associated gene or genes. The invention further provides methods for making an in silica S. cerevisiae model and methods for determining a S. cerevisiae physiological function using a model of the invention.
Pathway Analysis of Cell Culture Phenotypes and Uses Thereof
申请人:Melville Mark
公开号:US20090186358A1
公开(公告)日:2009-07-23
The present invention provides methods for systematically identifying genes, proteins and/or related pathways that regulate or indicative of cell phenotypes. The present invention further provides methods for manipulating the identified genes, proteins and/or pathways to engineer improved cell lines and/or to evaluate or select cell lines with desirable phenotypes.
Metabolomics-Based Identification of Disease-Causing Agents
申请人:Skolnick Jeffrey
公开号:US20110246081A1
公开(公告)日:2011-10-06
A method, computer-readable medium, and system for identifying one or more metabolites associated with a disease, comprising: comparing gene expression data from diseased cells to gene expression data from control cells in order to deduce genes that are differentially-regulated in the diseased cells relative to the control cells; based on enzyme function and pathway data for all human metabolites that utilize the genes that are differentially-regulated in the disease cells, identifying one or more metabolites whose intracellular levels are higher or lower in diseased cells than in control cells, and thereby associating the one or more metabolites with the disease.