Enantio- and Regioselective Epoxidation of Olefinic Double Bonds in Quinolones, Pyridones, and Amides Catalyzed by a Ruthenium Porphyrin Catalyst with a Hydrogen Bonding Site
摘要:
An array of differently substituted 3-alkenylquinolones was synthesized, and the enantio- and regioselectivity of their Ru-catalyzed epoxidation were studied. A precursor ruthenium(II) complex with a chiral tricyclic gamma-lactam skeleton (octahydro-1H-4,7-methanoisoindol-1-one) was available by Sonogashira cross-coupling with a monobromo-substituted ruthenium(II) porphyrin. Enantioselective epoxidation reactions (60-83% yield, 85-98% ee) were achieved with this catalyst, and it was shown that the enantioselectivity depends critically on the presence of a two-point hydrogen bond interaction between the gamma-lactam site of the catalyst and the delta-lactam (quinolone) site of the substrate. DFT calculations support the hypothesis that the reaction occurs via a hydrogen-bound transition state, in which the 3-alkenylquinolone adopts an s-trans conformation. The calculations further revealed that this transition state is preferred over a competing s-cis transition state because it exerts less strain in the rigid backbone and because the hydrogen bond interaction is more stable. The catalyst loading required for complete conversion was low (<0.2 mol %), and turnover numbers exceeding 4000 were recorded. It was shown that there is little, if any, inhibition of the catalytic process by other quinolones, which could potentially compete with the binding site. A mechanistic model for the catalytic reaction is presented. In accordance with this model 3-alkenylpyridones reacted with similar enantioselectivities as the respective quinolones. The epoxidation products were unstable, however, and the enantiomeric purity (77-87% ee) of the products could be established only after derivatization. Primary alkenoic acid amides also underwent the epoxidation but gave the respective products in lower enantioselectivities (70% and 45% ee), presumably because the enantioface differentiation is hampered by the increased flexibility of the substrates, which exhibit two or three rotatable single bonds between the binding site and the reactive olefinic double bond.
Enantio- and Regioselective Epoxidation of Olefinic Double Bonds in Quinolones, Pyridones, and Amides Catalyzed by a Ruthenium Porphyrin Catalyst with a Hydrogen Bonding Site
摘要:
An array of differently substituted 3-alkenylquinolones was synthesized, and the enantio- and regioselectivity of their Ru-catalyzed epoxidation were studied. A precursor ruthenium(II) complex with a chiral tricyclic gamma-lactam skeleton (octahydro-1H-4,7-methanoisoindol-1-one) was available by Sonogashira cross-coupling with a monobromo-substituted ruthenium(II) porphyrin. Enantioselective epoxidation reactions (60-83% yield, 85-98% ee) were achieved with this catalyst, and it was shown that the enantioselectivity depends critically on the presence of a two-point hydrogen bond interaction between the gamma-lactam site of the catalyst and the delta-lactam (quinolone) site of the substrate. DFT calculations support the hypothesis that the reaction occurs via a hydrogen-bound transition state, in which the 3-alkenylquinolone adopts an s-trans conformation. The calculations further revealed that this transition state is preferred over a competing s-cis transition state because it exerts less strain in the rigid backbone and because the hydrogen bond interaction is more stable. The catalyst loading required for complete conversion was low (<0.2 mol %), and turnover numbers exceeding 4000 were recorded. It was shown that there is little, if any, inhibition of the catalytic process by other quinolones, which could potentially compete with the binding site. A mechanistic model for the catalytic reaction is presented. In accordance with this model 3-alkenylpyridones reacted with similar enantioselectivities as the respective quinolones. The epoxidation products were unstable, however, and the enantiomeric purity (77-87% ee) of the products could be established only after derivatization. Primary alkenoic acid amides also underwent the epoxidation but gave the respective products in lower enantioselectivities (70% and 45% ee), presumably because the enantioface differentiation is hampered by the increased flexibility of the substrates, which exhibit two or three rotatable single bonds between the binding site and the reactive olefinic double bond.
Palladium-Catalyzed Reductive Aminocarbonylation of <i>o</i>-Iodophenol-Derived Allyl Ethers with <i>o</i>-Nitrobenzaldehydes to 3-Alkenylquinolin-2(1<i>H</i>)-ones
作者:Jian-Li Liu、Wei Wang、Xinxin Qi、Xiao-Feng Wu
DOI:10.1021/acs.orglett.2c00648
日期:2022.3.25
An attractive palladium-catalyzed reductive aminocarbonylation reaction of allylic ethers has been explored for the synthesis of 3-alkenylquinolin-2(1H)-one derivatives. With Mo(CO)6 as both CO surrogate and reductant, a variety of 3-alkenylquinolin-2(1H)-ones were obtained in good to excellent yields from o-iodophenol-derived allyl ethers with o-nitrobenzaldehydes as the nitrogen sources. This reaction
已经探索了一种有吸引力的钯催化的烯丙基醚的还原氨基羰基化反应,用于合成 3-alkenylquinolin-2(1 H )-one 衍生物。以Mo(CO) 6作为CO 替代物和还原剂,以邻硝基苯甲醛为氮源,由邻碘苯酚衍生的烯丙基醚以良好至优异的收率获得了多种3-alkenylquinolin-2(1 H )-one . 该反应通过级联途径进行,不依赖于以前的烯丙基羰基化反应所需的高压 CO 气体。该策略为构建 3-alkenylquinolin-2(1 H )-ones 提供了新途径。
Enantio- and Regioselective Epoxidation of Olefinic Double Bonds in Quinolones, Pyridones, and Amides Catalyzed by a Ruthenium Porphyrin Catalyst with a Hydrogen Bonding Site
作者:Philipp Fackler、Stefan M. Huber、Thorsten Bach
DOI:10.1021/ja305890c
日期:2012.8.1
An array of differently substituted 3-alkenylquinolones was synthesized, and the enantio- and regioselectivity of their Ru-catalyzed epoxidation were studied. A precursor ruthenium(II) complex with a chiral tricyclic gamma-lactam skeleton (octahydro-1H-4,7-methanoisoindol-1-one) was available by Sonogashira cross-coupling with a monobromo-substituted ruthenium(II) porphyrin. Enantioselective epoxidation reactions (60-83% yield, 85-98% ee) were achieved with this catalyst, and it was shown that the enantioselectivity depends critically on the presence of a two-point hydrogen bond interaction between the gamma-lactam site of the catalyst and the delta-lactam (quinolone) site of the substrate. DFT calculations support the hypothesis that the reaction occurs via a hydrogen-bound transition state, in which the 3-alkenylquinolone adopts an s-trans conformation. The calculations further revealed that this transition state is preferred over a competing s-cis transition state because it exerts less strain in the rigid backbone and because the hydrogen bond interaction is more stable. The catalyst loading required for complete conversion was low (<0.2 mol %), and turnover numbers exceeding 4000 were recorded. It was shown that there is little, if any, inhibition of the catalytic process by other quinolones, which could potentially compete with the binding site. A mechanistic model for the catalytic reaction is presented. In accordance with this model 3-alkenylpyridones reacted with similar enantioselectivities as the respective quinolones. The epoxidation products were unstable, however, and the enantiomeric purity (77-87% ee) of the products could be established only after derivatization. Primary alkenoic acid amides also underwent the epoxidation but gave the respective products in lower enantioselectivities (70% and 45% ee), presumably because the enantioface differentiation is hampered by the increased flexibility of the substrates, which exhibit two or three rotatable single bonds between the binding site and the reactive olefinic double bond.