This paper concerns peptidomimetic scaffolds that can present side chains in conformations resembling those of amino acids in secondary structures without incurring excessive entropic or enthalpic penalties. Compounds of this type are referred to here as minimalist mimics. The core hypothesis of this paper is that small sets of such scaffolds can be designed to analogue local pairs of amino acids (including noncontiguous ones) in any secondary structure; i.e., they are universal peptidomimetics. To illustrate this concept, we designed a set of four peptidomimetic scaffolds. Libraries based on them were made bearing side chains corresponding to many of the protein-derived amino acids. Modeling experiments were performed to give an indication of kinetic and thermodynamic accessibilities of conformations that can mimic secondary structures. Together, peptidomimetics based on these four scaffolds can adopt conformations that resemble almost any combination of local amino acid side chains in any secondary structure. Universal peptidomimetics of this kind are likely to be most useful in the design of libraries for high-throughput screening against diverse targets. Consequently, data arising from submission of these molecules to the NIH Molecular Libraries Small Molecule Repository (MLSMR) are outlined.
Dipeptide Mimics, Libraries Combining Two Dipeptide Mimics with a Third Group, and Methods for Production Thereof
申请人:Burgess Kevin
公开号:US20120232268A1
公开(公告)日:2012-09-13
Monovalent compounds having moieties comprising at least one amino acid side chain are bound to a core molecule, which also comprises a nucleophilic moiety bound to said core molecule. Monovalent compounds also comprise a macrocyclic ring, a nucleophilic moiety, and a spacer group. Monovalent compounds may be combined into bivalent and trivalent compounds, some of which may have a labeling tag. Methods of production of bivalent compounds and contemplated uses thereof are disclosed.
作者:Eunhwa Ko、Jing Liu、Lisa M. Perez、Genliang Lu、Amber Schaefer、Kevin Burgess
DOI:10.1021/ja1071916
日期:2011.1.26
This paper concerns peptidomimetic scaffolds that can present side chains in conformations resembling those of amino acids in secondary structures without incurring excessive entropic or enthalpic penalties. Compounds of this type are referred to here as minimalist mimics. The core hypothesis of this paper is that small sets of such scaffolds can be designed to analogue local pairs of amino acids (including noncontiguous ones) in any secondary structure; i.e., they are universal peptidomimetics. To illustrate this concept, we designed a set of four peptidomimetic scaffolds. Libraries based on them were made bearing side chains corresponding to many of the protein-derived amino acids. Modeling experiments were performed to give an indication of kinetic and thermodynamic accessibilities of conformations that can mimic secondary structures. Together, peptidomimetics based on these four scaffolds can adopt conformations that resemble almost any combination of local amino acid side chains in any secondary structure. Universal peptidomimetics of this kind are likely to be most useful in the design of libraries for high-throughput screening against diverse targets. Consequently, data arising from submission of these molecules to the NIH Molecular Libraries Small Molecule Repository (MLSMR) are outlined.