4-Hydroxy-5,6-dihydropyrones as Inhibitors of HIV Protease: The Effect of Heterocyclic Substituents at C-6 on Antiviral Potency and Pharmacokinetic Parameters
摘要:
Due largely to the emergence of multi-drug-resistant HIV strains, the development of new HIV protease inhibitors remains a high priority for the pharmaceutical industry. Toward this end, we previously identified a 4-hydroxy-5,6-dihydropyrone lead compound (CI-1029, 1) which possesses excellent activity against the protease enzyme, good antiviral efficacy in cellular assays, and promising bioavailability in several animal species. The search for a suitable backup candidate centered on the replacement of the aniline moiety at C-6 with an appropriately substituted heterocyle. In general, this series of heterocyclic inhibitors displayed good activity (in both enzymatic and cellular tests) and-low cellular toxicity; furthermore, several analogues exhibited improved pharmacokinetic parameters in animal models. The compound with the best combination of high potency, low toxicity, and favorable bioavailabilty was (S)-3-(2-tertbutyl-4-hydroxymethy1- 5-methyl-phenylsulfanyl)-4-hydroxy-6-isopropyl-6-(2-thiophen-3-yl-ethyl)-5,6-dihydro-pyran-2-one (13-(S)). This thiophene derivative also exhibited excellent antiviral efficacy against mutant HIV protease and resistant HIV strains. For these reasons, compound 13-(S) was chosen for further preclinical evaluation.
4-Hydroxy-5,6-dihydropyrones as Inhibitors of HIV Protease: The Effect of Heterocyclic Substituents at C-6 on Antiviral Potency and Pharmacokinetic Parameters
摘要:
Due largely to the emergence of multi-drug-resistant HIV strains, the development of new HIV protease inhibitors remains a high priority for the pharmaceutical industry. Toward this end, we previously identified a 4-hydroxy-5,6-dihydropyrone lead compound (CI-1029, 1) which possesses excellent activity against the protease enzyme, good antiviral efficacy in cellular assays, and promising bioavailability in several animal species. The search for a suitable backup candidate centered on the replacement of the aniline moiety at C-6 with an appropriately substituted heterocyle. In general, this series of heterocyclic inhibitors displayed good activity (in both enzymatic and cellular tests) and-low cellular toxicity; furthermore, several analogues exhibited improved pharmacokinetic parameters in animal models. The compound with the best combination of high potency, low toxicity, and favorable bioavailabilty was (S)-3-(2-tertbutyl-4-hydroxymethy1- 5-methyl-phenylsulfanyl)-4-hydroxy-6-isopropyl-6-(2-thiophen-3-yl-ethyl)-5,6-dihydro-pyran-2-one (13-(S)). This thiophene derivative also exhibited excellent antiviral efficacy against mutant HIV protease and resistant HIV strains. For these reasons, compound 13-(S) was chosen for further preclinical evaluation.
The present disclosure generally relates to compounds and pharmaceutical compositions that may be used in methods of treating cancer.
本公开涉及通常用于治疗癌症的化合物和药物组合物。
HIV protease inhibitors
申请人:——
公开号:US20040106606A1
公开(公告)日:2004-06-03
The present invention relates to novel dihydropyrones with tethered heterocycles having improved pharmacologic properties which potently inhibit the HIV aspartyl protease blocking HIV infectivity. The dihydropyrones are useful in the development of therapies for the treatment of viral infections and diseases including AIDS. The present invention is also directed to methods of synthesis of the dihydropyrones and intermediates useful in the preparation of the final compounds.