Synthesis, structure–affinity relationships, and molecular modeling studies of novel pyrazolo[3,4-c]quinoline derivatives as adenosine receptor antagonists
摘要:
This paper reports the study of new 2-phenyl- and 2-methylpyrazolo[3,4-c]quinolin-4-ones (series A) and 4-amines (series B), designed as adenosine receptor (AR) antagonists. The synthesized compounds bear at the 6-position various groups, with different lipophilicity and steric hindrance, that were thought to increase human A(1) and A(2A) AR affinities and selectivities, with respect to those of the parent 6-unsubstituted compounds. In series A, this modification was not tolerated since it reduced AR affinity, while in series B it shifted the binding towards the hA(1) subtype. To rationalize the observed structure-affinity relationships, molecular docking studies at A(2A)AR-based homology models of the A(1) and A(3) ARs and at the A(2A)AR crystal structure were carried out. (C) 2011 Elsevier Ltd. All rights reserved.
Synthesis, structure–affinity relationships, and molecular modeling studies of novel pyrazolo[3,4-c]quinoline derivatives as adenosine receptor antagonists
摘要:
This paper reports the study of new 2-phenyl- and 2-methylpyrazolo[3,4-c]quinolin-4-ones (series A) and 4-amines (series B), designed as adenosine receptor (AR) antagonists. The synthesized compounds bear at the 6-position various groups, with different lipophilicity and steric hindrance, that were thought to increase human A(1) and A(2A) AR affinities and selectivities, with respect to those of the parent 6-unsubstituted compounds. In series A, this modification was not tolerated since it reduced AR affinity, while in series B it shifted the binding towards the hA(1) subtype. To rationalize the observed structure-affinity relationships, molecular docking studies at A(2A)AR-based homology models of the A(1) and A(3) ARs and at the A(2A)AR crystal structure were carried out. (C) 2011 Elsevier Ltd. All rights reserved.