摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

chlorophosphoric acid bis-(1-cyano-3-methyl-butyl ester) | 109016-63-9

中文名称
——
中文别名
——
英文名称
chlorophosphoric acid bis-(1-cyano-3-methyl-butyl ester)
英文别名
4-Chlor-2,6-diisobutyl-3,5-dioxa-4-phospha-heptandinitril;Chlorophosphorigsaeure-bis-(1-cyan-3-methyl-butylester);Chlor-bis-(1-cyan-3-methyl-butoxy)-phosphin
chlorophosphoric acid bis-(1-cyano-3-methyl-butyl ester)化学式
CAS
109016-63-9
化学式
C12H20ClN2O2P
mdl
——
分子量
290.73
InChiKey
CNPFKKVDEVTUKP-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    4.36
  • 重原子数:
    18.0
  • 可旋转键数:
    8.0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.83
  • 拓扑面积:
    66.04
  • 氢给体数:
    0.0
  • 氢受体数:
    4.0

反应信息

  • 作为反应物:
    参考文献:
    名称:
    On Three-Dimensional Microcrack Density Distribution
    摘要:
    This paper considers tensorial representations of several microcrack distribution fractions due to tensile and compressive principal stresses in brittle materials in the framework of continuum mechanics. The common framework for deriving the damage tensors of different order from any density function is suggested. Second and fourth order damage tensors are derived for Dirac-, truncated Gauss-, and trigonometrical (cos(2)-) microcrack distributions using harmonic Fourier-like series. Each distribution is investigated under different combinations of tensile and compressive principal stresses for three-dimensional load cases. It is emphasized that only the trigonometrical distribution yields a spherical crack density surface for the fourth order tensor approximation under three equal principal stresses.
    DOI:
    10.1002/1521-4001(200101)81:1<3::aid-zamm3>3.0.co;2-s
  • 作为产物:
    描述:
    2-羟基-4-甲基-戊腈三氯化磷 作用下, 生成 chlorophosphoric acid bis-(1-cyano-3-methyl-butyl ester) 、 alkaline earth salt of/the/ methylsulfuric acid
    参考文献:
    名称:
    On Three-Dimensional Microcrack Density Distribution
    摘要:
    This paper considers tensorial representations of several microcrack distribution fractions due to tensile and compressive principal stresses in brittle materials in the framework of continuum mechanics. The common framework for deriving the damage tensors of different order from any density function is suggested. Second and fourth order damage tensors are derived for Dirac-, truncated Gauss-, and trigonometrical (cos(2)-) microcrack distributions using harmonic Fourier-like series. Each distribution is investigated under different combinations of tensile and compressive principal stresses for three-dimensional load cases. It is emphasized that only the trigonometrical distribution yields a spherical crack density surface for the fourth order tensor approximation under three equal principal stresses.
    DOI:
    10.1002/1521-4001(200101)81:1<3::aid-zamm3>3.0.co;2-s
点击查看最新优质反应信息

文献信息

  • Kusnezow; Waletdinow, Metodiceskij sbornik, 1957, # 23, p. 167
    作者:Kusnezow、Waletdinow
    DOI:——
    日期:——
查看更多