摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

碳化锆 | 12070-14-3

中文名称
碳化锆
中文别名
碳化锆/纳米碳化锆;纳米碳化锆;碳化鋯
英文名称
zirconium monocarbide
英文别名
zirconium carbide;methane;zirconium
碳化锆化学式
CAS
12070-14-3
化学式
CZr
mdl
——
分子量
103.235
InChiKey
UGHSGZIDZZRZKT-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    3540°C
  • 沸点:
    5100°C
  • 密度:
    6.73 g/mL at 25 °C(lit.)
  • 暴露限值:
    ACGIH: TWA 5 mg/m3; STEL 10 mg/m3NIOSH: IDLH 25 mg/m3; TWA 5 mg/m3; STEL 10 mg/m3
  • 稳定性/保质期:
    在常温常压下稳定,避免与氧化物和空气接触。

计算性质

  • 辛醇/水分配系数(LogP):
    0.63
  • 重原子数:
    2
  • 可旋转键数:
    0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

安全信息

  • TSCA:
    Yes
  • 危险等级:
    4.1
  • 危险品标志:
    Xn,F
  • 安全说明:
    S16,S27,S33,S36/37/39
  • 危险类别码:
    R20/21/22,R11
  • WGK Germany:
    3
  • 危险品运输编号:
    UN 3178
  • RTECS号:
    ZH7155000
  • 海关编码:
    2849909000
  • 包装等级:
    III
  • 危险类别:
    4.1
  • 储存条件:
    常温下应密闭避光保存于通风干燥处。

SDS

SDS:aa65db630d79f19e18fe6231266489dc
查看

Section 1: Product Identification
Chemical Name: Zirconium carbide (99+%-Zr)
CAS Registry Number: 12070-14-3
Formula: ZrC
EINECS Number: 235-125-1
Chemical Family: metal carbides
Synonym: none

Section 2: Composition and Information on Ingredients
Ingredient CAS Number Percent ACGIH (TWA) OSHA (PEL)
Title compound 12070-14-3 100% 5mg/m3 (as Zr) 5mg/m3 (as Zr)

Section 3: Hazards Identification
Emergency Overview: May be irritating to skin, eyes and mucous membranes.
Primary Routes of Exposure: Ingestion
Eye Contact: May cause mild to moderate irritation of the eyes.
Skin Contact: May cause slight to mild irritation of the skin.
Inhalation: Dust may be irritating to the nose, mucous membranes and respiratory tract.
Ingestion: No information is available on the physiological effects of ingestion.
Acute Health Affects: May be irritating to skin, eyes and respiratory tract.
Chronic Health Affects: No information available on long-term chronic effects.
NTP: No
IARC: No
OSHA: No

SECTION 4: First Aid Measures
Immediately flush the eyes with copious amounts of water for at least 10-15 minutes. A victim may need
Eye Exposure:
assistance in keeping their eye lids open. Get immediate medical attention.
Wash the affected area with water. Remove contaminated clothes if necessary. Seek medical assistance if
Skin Exposure:
irritation persists.
Remove the victim to fresh air. Closely monitor the victim for signs of respiratory problems, such as difficulty in
Inhalation:
breathing, coughing, wheezing or pain. In such cases seek immediate medical assistance.
Seek medical attention immediately. Keep the victim calm. Give the victim water (only if conscious). Induce
Ingestion:
vomiting only if directed by medical personnel.

SECTION 5: Fire Fighting Measures
Flash Point: no data
Autoignition Temperature: no data
Explosion Limits: no data
Extinguishing Medium: carbon dioxide, foam or dry powder
If this product is involved in a fire, firefighters should be equipped with NIOSH approved positive pressure
Special Fire Fighting Procedures:
self-contained breathing apparatus.
Hazardous Combustion and If involved in a fire this material may release toxic and corrosive fumes.
Decomposion Products:
Unusual Fire or Explosion Hazards: Flammable. No unusual fire or explosion hazards.

SECTION 6: Accidental Release Measures
Spill and Leak Procedures: Sweep up the solids and dispose of properly.

SECTION 7: Handling and Storage
Handling and Storage: Store the material in a sealed container. Keep away from heat.

SECTION 8: Exposure Controls and Personal Protection
Eye Protection: Always wear approved safety glasses when handling a chemical substance in the laboratory.
Skin Protection: Wear protective clothing and gloves.
Ventilation: If possible, handle the material in an efficient fume hood.
If ventilation is not available a respirator should be worn. The use of respirators requires a Respiratory
Respirator:
Protection Program to be in compliance with 29 CFR 1910.134.
Ventilation: If possible, handle the material in an efficient fume hood.
Additional Protection: No additional protection required.

SECTION 9: Physical and Chemical Properties
Color and Form: 3 micron black powder
Molecular Weight: 103.23
Melting Point: 3540°
Boiling Point: 5100°C
Vapor Pressure: no data
Specific Gravity: 6.73
Odor: none
Solubility in Water: insoluble

SECTION 10: Stability and Reactivity
Stability: air and moisture stable
Hazardous Polymerization: No hazardous polymerization.
Conditions to Avoid: none
Incompatibility: oxidizing agents and halogens
Decomposition Products: carbon monoxide, carbon dioxide and zirconium oxide.

SECTION 11: Toxicological Information
RTECS Data: No information available in the RTECS files.
Carcinogenic Effects: no data
Mutagenic Effects: no data
Tetratogenic Effects: no data

SECTION 12: Ecological Information
Ecological Information: No information available

SECTION 13: Disposal Considerations
Disposal: Dispose of according to local, state and federal regulations.

SECTION 14: Transportation
Shipping Name (CFR): Flammable solid, Inorganic, N.O.S.
Hazard Class (CFR): 4.1
Additional Hazard Class (CFR): NA
Packaging Group (CFR): III
UN ID Number (CFR): UN# 3178
Shipping Name (IATA): Flammable solid, Inorganic, N.O.S.
Hazard Class (IATA): 4.1
Additional Hazard Class (IATA): NA
Packaging Group (IATA): III
UN ID Number (IATA): UN# 3178

SECTION 15: Regulatory Information
TSCA: Listed in the TSCA inventory.
SARA (Title 313): Title compound not listed
Second Ingredient: none


SECTION 16 - ADDITIONAL INFORMATION
N/A




制备方法与用途

高温结构材料:碳化锆

碳化锆 (ZrC) 的化学式为 ZrC,是一种重要的高强度、耐腐蚀和化学稳定性好的高温结构材料。其外观为灰黑色有金属光泽的立方系晶体,熔点高达 3540℃,沸点为 5100℃,相对密度为 6.73 克/厘米³。碳化锆不溶于冷水和盐酸,可溶于含有硝酸或双氧水的氢氟酸及热浓硫酸,高温下与氯气反应生成四氯化锆,在 700℃时在空气中燃烧生成氧化锆,并且不会与水发生反应。

生产方法

碳化锆主要通过以下两种方法制备:

  1. 碳还原法:在电弧炉中用碳还原锆英石,或在感应加热真空炉中用碳还原氧化锆。
  2. 气相沉积法:四氯化锆与碳氢化合物在氢气氛中反应,于 900~1400℃条件下通过化学气相沉积制得。
应用 ZrC 镀层

从 1970 年代起,美国、德国和日本等各国科学家相继开展了 ZrC 镀层的制备与辐照性能研究。ZrC 镀层因其低中子吸收截面及高阻挡放射性裂变产物释放的能力,在高温气冷堆包覆燃料颗粒的应用中展现出良好前景。相较于 SiC,ZrC 镀层在 1600℃时对 Cs-137 的扩散系数降低了两个数量级,因此能够有效提高包覆燃料颗粒的性能及应用温度。

ZrC 材料

碳化锆是一种硬度大的高熔点材料和极好的高温耐火材料。主要用途包括:

  • 作为火箭发动机中固体推进剂的一种原料。
  • 生产合金钢、金属锆以及四氯化锆,同时也是有前途的精细陶瓷材料。
  • 曾用作白热灯丝,现主要用于磨料及硬质合金的制备。

图1:碳化锆粉末

该信息由 Chemicalbook 的侍艳编辑整理(2016年1月13日)。

反应信息

  • 作为反应物:
    描述:
    碳化锆 在 Cl2 作用下, 以 neat (no solvent) 为溶剂, 生成 氯化锆(IV)
    参考文献:
    名称:
    Gmelin Handbuch der Anorganischen Chemie, Gmelin Handbook: Zr: MVol., 146, page 368 - 370
    摘要:
    DOI:
  • 作为产物:
    描述:
    zirconium tetrapropoxide 在 乙酰丙酮 作用下, 以 正丁醇 为溶剂, 生成 碳化锆
    参考文献:
    名称:
    摘要:
    Polymeric precursors for carbothermal reactions were prepared from the chelate derivatives of titanium and zirconium alkoxides L2M(OR)(2) (L is an acetylacetonato or ethyl acetoacetato group) in alcohols by reaction with organic compounds having two or more reactive OH groups, such as ethylene glycol, saccharose, tartaric acid or dihydroxybenzenes. These organic groups act as bridging ligands in transesterification and condensation polymerization yielding either spinnable viscous solutions or elastic gels. The rheological properties of the concentrated solutions allowed for the preparation of polymer fibres and films. At temperatures up to 1600 degrees C, bulk precursors as well as fibres and films were thermally converted into carbide powders, films or coatings. The structural transformations of the polymeric materials into the carbides were investigated using thermogravimetric-differentia I thermal ana lyses (TGA-DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR) analysis and Raman spectroscopy. (C) 1998 Kluwer Academic Publishers.
    DOI:
    10.1023/a:1004428818457
  • 作为试剂:
    描述:
    一氧化碳氧气碳化锆 作用下, 以 neat (no solvent, gas phase) 为溶剂, 生成 二氧化碳
    参考文献:
    名称:
    Svintsova, L. G.; Shimanovskaya, V. V.; Il'chenko, N. I., Kinetics and Catalysis, 1982, vol. 23, p. 332 - 335
    摘要:
    DOI:
点击查看最新优质反应信息

文献信息

  • New criteria for the applicability of combustion synthesis: The investigation of thermodynamic and kinetic processes for binary Chemical Reactions
    作者:Xiaoming Tan、Xianli Su、Yonggao Yan、Ctirad Uher、Qingjie Zhang、Xinfeng Tang
    DOI:10.1016/j.jallcom.2020.158465
    日期:2021.4
    Combustion synthesis is a novel technique that utilizes the exothermic heat of a chemical reaction to maintain the reaction and to rapidly prepare materials. But, hitherto, none of unified criterion for the validation of combustion synthesis has been proposed. Herein, we proposed the conditions need to be met. In terms of kinetics, at the adiabatic temperature (Tad), the diffusion distance of atoms
    燃烧合成是一种利用化学反应的放热来维持反应并快速制备材料的新技术。但是,迄今为止,尚未提出用于验证燃烧合成的统一标准。在此,我们提出了需要满足的条件。就动力学而言,在绝热温度(T ad)下,原子的扩散距离(升Ť广告)在0.1 s内应大于反应物的粒径(d), 那是, 升Ť广告≥d。对于满足T ad / T m,L的系统≥1(其中T m,L是反应物的低熔点成分的熔点),液相的存在将原子的扩散距离从纳米显着增加到数十微米,从而成为标准升Ť广告≥d简化为T ad / T m,L≥在大多数情况下为1。在热力学方面,系统需要确保反应成分处于激活状态,即T ad / T m,H ≥0.7,其中T m,H是高熔点组分的熔点。本研究提出的SHS反应标准进一步提高了对SHS反应的理论理解,并为探索二元和多组分化合物的超快合成提供了指导。
  • Ball Milling-Induced Combustion in Powder Mixtures Containing Titanium, Zirconium, or Hafnium
    作者:L. Takacs
    DOI:10.1006/jssc.1996.0267
    日期:1996.8
    induces self propagating high temperature reactions in many highly exothermic powder mixtures. This phenomenon has been studied in a variety of reactions with titanium, zirconium, and hafnium. Several oxides (CuO, Cu2O, NiO, Fe3O4, and ZnO) were reduced with Ti, Zr, and Hf and the borides, carbides, silicides, and sulfides of these metals were prepared from elemental mixtures. The ignition time is much shorter
    球磨在许多高度放热的粉末混合物中引起自蔓延的高温反应。已经在与钛,锆和ha的各种反应中研究了这种现象。用Ti,Zr和Hf还原了几种氧化物(CuO,Cu 2 O,NiO,Fe 3 O 4和ZnO),并从元素混合物中制备了这些金属的硼化物,碳化物,硅化物和硫化物。当氧气或硫参与反应时,Zr的点火时间比Ti或Hf的点火时间短得多,但是对于硼化物,碳化物和硅化物的形成没有观察到类似的变化。提示氧在ZrO 2中快速扩散,而硫很可能在ZrS 2中扩散对此行为负责。
  • Interaction analysis of systems involving refractory compounds by means of DTA method
    作者:Sergei N. Lakiza
    DOI:10.1016/0040-6031(85)85145-5
    日期:1985.9
    Using DTA and other methods, the study on interaction of silicon nitride with nitrides of titanium, vanadium and zirconium carbide was carried out. The typical features of such interactions are the effect of Si3N4 dissociation stability and the formation of transient metals'-silicides.
    采用DTA等方法,对氮化硅与钛、钒、碳化锆的氮化物相互作用进行了研究。这种相互作用的典型特征是 Si3N4 离解稳定性的影响和瞬态金属硅化物的形成。
  • TEM/STEM Observation of ZrC Coating Layer for Advanced High-Temperature Gas-Cooled Reactor Fuel, Part II
    作者:Jun Aihara、Shohei Ueta、Atsushi Yasuda、Hideharu Ishibashi、Yasuhiro Mozumi、Kazuhiro Sawa、Yoshinobu Motohashi
    DOI:10.1111/j.1551-2916.2008.02822.x
    日期:2009.1
    The Japan Atomic Energy Agency (JAEA) has started to study and develop zirconium carbide (ZrC)‐coated fuel particles for advanced high‐temperature gas‐cooled reactors. The ZrC coating layer has been fabricated at JAEA by chemical vapor deposition using a pyrolytic reaction of zirconium bromide. The microstructures of the ZrC layers, whose nominal deposition temperatures could be measured and controlled during the deposition process, were characterized by means of TEM and STEM. In the present study, three batches were prepared and compared with each other as well as the previous batches. The crystallographic orientation of ZrC with regard to the growth direction in the ZrC layers deposited at a constant temperature of 1630 K was different from that deposited at varying temperatures in the 1493–1823 K range. A thin layer of turbostratic carbon was observed at the boundary between pyrolytic carbon and ZrC in particles deposited at the highest temperature among those used in this study (the nominal temperature was 1769 K); no such structure was found in a batch deposited at a lower temperature (the nominal temperature was 1632 K). Therefore, precise control of temperature is shown to be critical to the formation of good ZrC coatings.
    日本原子能机构(JAEA)已开始研究和开发用于先进高温气冷堆的碳化锆(ZrC)涂层燃料颗粒。ZrC涂层层是通过化学气相沉积方法,利用四氯化锆的热解反应在JAEA制成的。在沉积过程中,名义沉积温度是可以测量和控制的,ZrC层的微观结构通过透射电镜(TEM)和扫描透射电镜(STEM)进行了表征。在本研究中,制备了三批样品,并相互比较以及与之前的批次进行比较。在1630 K恒定温度下沉积的ZrC层中,ZrC的晶体取向与生长方向不同,而在1493–1823 K范围内温度变化沉积的则有所不同。在本研究中使用的最高温度(名义温度为1769 K)的粒子中,在热解碳与ZrC之间的边界处观察到一层 turbostratic 碳;而在较低温度(名义温度为1632 K)沉积的批次中未发现这种结构。因此,温度的精确控制被证明对形成良好的ZrC涂层至关重要。
  • Positron lifetime in non-stoichiometric carbides with a B1(NaCl) structure
    作者:A A Rempel、M Forster、H -E Schaefer
    DOI:10.1088/0953-8984/5/2/013
    日期:1993.1.11
    The positron lifetimes in the carbides of the tetravalent group IV transition metals are found to be similar to those in the corresponding pure metals whereas in the carbides of the pentavalent group V metals the positron lifetimes are by about 40 ps longer than in the pure metals. A representation of the positron annihilation rate versus the density of metal valence electrons demonstrates that the
    发现四价第 IV 族过渡金属的碳化物中的正电子寿命与相应的纯金属中的正电子寿命相似,而在五价第 V 族金属的碳化物中,正电子寿命比纯金属长约 40 ps。正电子湮灭率与金属价电子密度的关系表明,在这些碳化物中,正电子主要与金属价电子湮灭。这一结果得到了 NbCy 中正电子寿命随碳空位含量为 1-y 的减少的有力支持,并被解释为碳亚晶格空位上的正电子湮灭。
查看更多