Selective Endothelin A Receptor Antagonists. 3. Discovery and Structure−Activity Relationships of a Series of 4-Phenoxybutanoic Acid Derivatives
摘要:
The third in this series of papers describes our further progress into the discovery of a potent and selective endothelin A (ETA) receptor antagonist for the potential treatment of diseases in which a pathophysiological role for endothelin has been implicated. These include hypertension, ischemic diseases, and atherosclerosis. In earlier publications we have outlined the discovery and structure-activity relations of two moderately potent series of nonpeptide ETA receptor antagonists. In this paper, we describe how a pharmacophore model for ETA receptor binding was developed which enabled these two series of compounds to be merged into a single class of 4-phenoxybutanoic acid derivatives. The subsequent optimization of in vitro activity against the ETA receptor led to the discovery of (R)-4-[2-cyano-5-(3-pyridylmethoxy)phenoxy]-4-(2-methylphenyl)butanoic acid (12m). This compound exhibits low-nanomolar binding to the ETA receptor and a greater than 1000-fold selectivity over the ETB receptor. Data are presented to demonstrate that 12m is orally bioavailable in the rat and is a functional antagonist in vitro and in vivo of ET-1-induced vasoconstriction.
Selective Endothelin A Receptor Antagonists. 3. Discovery and Structure−Activity Relationships of a Series of 4-Phenoxybutanoic Acid Derivatives
摘要:
The third in this series of papers describes our further progress into the discovery of a potent and selective endothelin A (ETA) receptor antagonist for the potential treatment of diseases in which a pathophysiological role for endothelin has been implicated. These include hypertension, ischemic diseases, and atherosclerosis. In earlier publications we have outlined the discovery and structure-activity relations of two moderately potent series of nonpeptide ETA receptor antagonists. In this paper, we describe how a pharmacophore model for ETA receptor binding was developed which enabled these two series of compounds to be merged into a single class of 4-phenoxybutanoic acid derivatives. The subsequent optimization of in vitro activity against the ETA receptor led to the discovery of (R)-4-[2-cyano-5-(3-pyridylmethoxy)phenoxy]-4-(2-methylphenyl)butanoic acid (12m). This compound exhibits low-nanomolar binding to the ETA receptor and a greater than 1000-fold selectivity over the ETB receptor. Data are presented to demonstrate that 12m is orally bioavailable in the rat and is a functional antagonist in vitro and in vivo of ET-1-induced vasoconstriction.
Selective Endothelin A Receptor Antagonists. 3. Discovery and Structure−Activity Relationships of a Series of 4-Phenoxybutanoic Acid Derivatives
作者:Peter C. Astles、Clive Brealey、Thomas J. Brown、Vincenzo Facchini、Caroline Handscombe、Neil V. Harris、Clive McCarthy、Iain M. McLay、Barry Porter、Alan G. Roach、Carol Sargent、Christopher Smith、Roger J. A. Walsh
DOI:10.1021/jm9707131
日期:1998.7.1
The third in this series of papers describes our further progress into the discovery of a potent and selective endothelin A (ETA) receptor antagonist for the potential treatment of diseases in which a pathophysiological role for endothelin has been implicated. These include hypertension, ischemic diseases, and atherosclerosis. In earlier publications we have outlined the discovery and structure-activity relations of two moderately potent series of nonpeptide ETA receptor antagonists. In this paper, we describe how a pharmacophore model for ETA receptor binding was developed which enabled these two series of compounds to be merged into a single class of 4-phenoxybutanoic acid derivatives. The subsequent optimization of in vitro activity against the ETA receptor led to the discovery of (R)-4-[2-cyano-5-(3-pyridylmethoxy)phenoxy]-4-(2-methylphenyl)butanoic acid (12m). This compound exhibits low-nanomolar binding to the ETA receptor and a greater than 1000-fold selectivity over the ETB receptor. Data are presented to demonstrate that 12m is orally bioavailable in the rat and is a functional antagonist in vitro and in vivo of ET-1-induced vasoconstriction.