Arylene Ethynylene Macrocycles Prepared by Precipitation-Driven Alkyne Metathesis
摘要:
A convenient, multigram-scale synthesis of arylene ethynylene macrocycles near room temperature is described. Driven by the precipitation of a diarylacetylene byproduct, alkyne metathesis produces the desired macrocycles in one step from monomers in high yields.
Solid-Phase Synthesis of <i>m</i>-Phenylene Ethynylene Heterosequence Oligomers
作者:Erin L. Elliott、Christian R. Ray、Stefan Kraft、Joseph R. Atkins、Jeffrey S. Moore
DOI:10.1021/jo0607212
日期:2006.7.1
Both homo- and heterosequence m-phenylene ethynylene oligomers are synthesized using a conceptually simple iterative solid-phase strategy. Oligomers are attached to Merrifield's resin through a known triazene-type linkage. The phenylene ethynylene molecular backbone is constructed through a series of palladium-mediated cross-coupling reactions. The strategy employs two types of monomers that bear orthogonal reactivity, one being a monoprotected bisethynyl arene and the other being a 3-bromo-5-iodo arene. The catalyst conditions are tailored to the requirements of each monomer type. The monoprotected bisethynyl arene is coupled to the growing chain in 2 h at room temperature using a Pd(I) dimer precatalyst ((Bu3P)-Bu-t-(Pd(mu-Cl)(mu-2-methyl allyl) Pd)(PBu3)-Bu-t) in conjunction with ZnBr2 and diisopropylamine. In alternate steps, the resin is deprotected in situ with TBAF and coupled to the 3-bromo-5-iodo arene using the iodo selective Pd(tri-2-furylphosphine) 4 catalyst in conjunction with CuI and piperidine; this reaction is also completed in 2 h at room temperature. These cross-coupling events are alternated until an oligomer of the desired length is achieved. The oligomer is then cleaved from the resin using CH2I2/I-2 at 110 degrees C and purified using preparatory GPC. Using this method, a series of homo- and heterosequence oligomers up to 12 units in length in excellent yield and purity were synthesized on the 100 mg scale. Longer oligomers were attempted; however, deletion sequences were found in oligomers longer than 12 units.
Supramolecular Chelation Based on Folding
作者:Matthew T. Stone、Jeffrey S. Moore
DOI:10.1021/ja050713n
日期:2005.4.1
Crystallographic analysis revealed that pyricline-palladium complexation is a good geometric match to the m-phenylene ethynylene (mPE) repeat unit and thus could serve as a reversible linking group to join oligomer segments together. A series of pyricline-terminated mPE oligomers were then synthesized and found to coordinate with palladium dichloride to give complexes effectively twice the length of the free oligomers. A quantitative analysis of these coordination equilibria by isothermal calorimetry found the ability of the pyricline end-group to form a coordination complex corresponded with their ability to fold. Oligomers that were able to form complexes of sufficient length to fold showed positive cooperativity based on experimental determination of their association constants with a palladium ion. We suggest that the additional free energy of complexation for the folded oligomers is analogous to chelation by multidentate ligands, but here the "multidentate ligand" is held together by supramolecular rather than covalent bonds.
The Size-Selective Synthesis of Folded Oligomers by Dynamic Templation
作者:Tohru Nishinaga、Aya Tanatani、Keunchan Oh、Jeffrey S. Moore
DOI:10.1021/ja025698q
日期:2002.5.1
A dynamic pool of m-phenylene ethynylene oligomers generated by sequence ligation using the imine metathesis reaction was equilibrated under a variety of conditions, and the mixture of products was analyzed by HPLC. The equilibration was performed in the presence and absence of rodlike ligand 2b, which exhibits an affinity for the helical oligomers that is very length specific. Among the eight oligomers generated during metathesis equilibrium, the formation of 22-mer 6b was enhanced in acetonitrile in the presence of 2b. This particular oligomer has the highest binding affinity for 2b. Quantitative analysis by HPLC of the products indicated that 6b was produced in 66% yield in the presence of 2 equiv 2b while a 37% yield was produced in the absence of 2b. Judging from the binding affinities of oligomers 6 with 2b, the equilibrium shifting was driven by the selective binding of 6b with 2b.
Helical Pitch of <i>m</i>-Phenylene Ethynylene Foldamers by Double Spin Labeling
作者:Kenji Matsuda、Matthew T. Stone、Jeffrey S. Moore
DOI:10.1021/ja027437m
日期:2002.10.1
To investigate the helical conformation of oligo(m-phenylene ethynylene)s, a pair of TEMPO spin labels were appended to the backbone. The two TEMPO radicals were separated by the four, five, and six repeating units. ESR spectra of the labeled oligomers were measured in chloroform and in ethyl acetate solvents in which the oligomers are disordered and folded, respectively. The measurement and analysis of ESR spectra revealed that six repeating units make one helical turn.
Reversible Polymerization Driven by Folding
作者:Dahui Zhao、Jeffrey S. Moore
DOI:10.1021/ja026957e
日期:2002.8.1
Bisfunctionalized m-phenylene ethynylene imine oligomers were polymerized in the polar solvent acetonitrile, resulting in high-molecular weight poly(m-phenylene ethynylene imine)s. It is hypothesized that this polymerization, which proceeds through the reversible metathesis of imine bonds, is driven by the folding of the long m-phenylene ethynylene imine chains. Upon conducting the polymerization in a series of solvents in which the m-phenylene ethynylene oligomers exhibit different folding stabilities, it was possible to correlate the molecular weight of the resulting poly(m-phenylene ethynylene imine)s with the helical stability of the corresponding oligomers. The polymerization was also demonstrated to be reversible and responsive to solvent and temperature changes.