A series of phosphanes with imidazolyl substituents were prepared as hemilabile PN ligands. The corresponding gold(I) complexes were tested as bifunctional catalysts in the Markovnikov hydration of 1-octyne, as well as in the synthesis of propargylamines by the three component coupling reaction of piperidine, benzaldehyde, and phenylacetylene. While the activity in the hydration of 1-octyne was low, the complexes are potent catalysts for the three component coupling reaction. In homogeneous solution the conversions to the respective propargylamine were considerably higher than under aqueous biphasic conditions. The connectivity of the imidazolyl substituents to the phosphorus atom, their substitution pattern, as well as the number of heteroaromatic substituents have pronounced effects on the catalytic activity of the corresponding gold(I) complexes. Furthermore, formation of polymetallic species with Au-2, Au-3, and Au-4 units has been observed and the solid-state structures of the compounds [(5)(2)Au3Cl2]Cl and [(3c)(2)Au4Cl2]Cl-2 (3c = tris(2-isopropylimidazol-4(5)-yl phosphane, 5 = 2-tert-butylimidazol-4(5)-yldiphenyl phosphane) were determined. The gold(I) complexes of imidazol-2-yl phosphane ligands proved to be a novel source for bis(NHC)gold(I) complexes (NHC = N-heterocyclic carbene).
Is the<sup>1</sup><i>J</i><sub>PSe</sub>Coupling Constant a Reliable Probe for the Basicity of Phosphines? A<sup>31</sup>P NMR Study
作者:Udo Beckmann、Diyana Süslüyan、Peter C. Kunz
DOI:10.1080/10426507.2010.547892
日期:2011.10
functionalized aryl substituents on the electron-donating ability and basicity of the phosphorus atoms in heteroaryl phosphines and diphosphines has been determined by the use of the direct 1JPSe coupling constants of the corresponding selenides. The generality of the use of 31P–77Se spin–spin coupling constants as probe for the basicity of phosphines is discussed as well as the scope and limits of this concept