Regioselective Hydroacylation of 1,3-Dienes by Cobalt Catalysis
摘要:
We describe a cobalt-catalyzed hydroacylation of 1,3-dienes with non-chelating aldehydes. Aromatic aldehydes provide 1,4-addition products as the major isomer, while aliphatic aldehydes favor 1,2-hydroacylation products. The kinetic profile supports an oxidative cyclization mechanism involving a cobaltacycle intermediate that undergoes transformation with high regio- and stereoselectivity.
α- and β-Functionalized Ketones from 1,3-Dienes and Aldehydes: Control of Regio- and Enantioselectivity in Hydroacylation of 1,3-Dienes
作者:Mahesh M. Parsutkar、T. V. RajanBabu
DOI:10.1021/jacs.1c06245
日期:2021.8.18
oxidative dimerization mechanism that involves a Co(I)/Co(III) redox cycle that appears to be initiated by a cationic Co(I) intermediate. Studies of reactions using isolated neutral and cationic Co(I) complexes confirm the critical role of the cationic intermediates in these reactions. Enantioselective 1,2-hydroacylation of 2-trimethylsiloxy-1,3-diene reveals a hitherto undisclosed route to chiral siloxy-protected
Regioselective Hydroacylation of 1,3-Dienes by Cobalt Catalysis
作者:Qing-An Chen、Daniel K. Kim、Vy M. Dong
DOI:10.1021/ja500268w
日期:2014.3.12
We describe a cobalt-catalyzed hydroacylation of 1,3-dienes with non-chelating aldehydes. Aromatic aldehydes provide 1,4-addition products as the major isomer, while aliphatic aldehydes favor 1,2-hydroacylation products. The kinetic profile supports an oxidative cyclization mechanism involving a cobaltacycle intermediate that undergoes transformation with high regio- and stereoselectivity.