摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(+/-)-methyl 2-(E)-phenylocta-5,7-dienoate | 930269-86-6

中文名称
——
中文别名
——
英文名称
(+/-)-methyl 2-(E)-phenylocta-5,7-dienoate
英文别名
methyl (E)-2-phenylocta-5,7-dienoate
(+/-)-methyl 2-(E)-phenylocta-5,7-dienoate化学式
CAS
930269-86-6
化学式
C15H18O2
mdl
——
分子量
230.307
InChiKey
WPZIYQHGUXAMFE-SNAWJCMRSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    327.5±21.0 °C(Predicted)
  • 密度:
    0.998±0.06 g/cm3(Temp: 20 °C; Press: 760 Torr)(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    3.47
  • 重原子数:
    17.0
  • 可旋转键数:
    6.0
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.27
  • 拓扑面积:
    26.3
  • 氢给体数:
    0.0
  • 氢受体数:
    2.0

反应信息

  • 作为反应物:
    参考文献:
    名称:
    阳离子-π控制分子内施密特反应的区域化学,以形成桥连双环内酰胺
    摘要:
    在桥头位置掺入内酰胺氮的桥连双环内酰胺多年来一直受到关注,因为它们掺入了无法实现标准平面几何形状的“扭曲酰胺”。 1 尽管致力于这些化合物的大部分工作都集中在酰胺键水解,us2 和其他人最近的工作表明,关于这些有趣结构的反应性还有很多需要了解的地方。毫不奇怪,这些化合物发生快速水解的趋势使它们的合成变得复杂。尽管已经使用了形成酰胺键的标准方法,但这些路线的产率通常很低,或者伴随着产品分离的困难。 1 在本文中,我们描述了桥连双环内酰胺合成问题的解决方案,它利用烷基叠氮化物和酮的酸促进反应,其中区域化学由芳基与阳离子离去基团的空间相互作用控制。反应中间体。Stoltz 和 Tani 最近报道了分子内施密特反应解决桥连内酰胺问题的效用(方案 1a)。 5 使用 3-(叠氮乙基)环戊酮,证明可以形成两种内酰胺的混合物,其中所需的奎宁环酮 1a通过重结晶分离。这个序列值得注意,因为它首次允许分离和表征标志性的桥内酰胺
    DOI:
    10.1021/ja068919r
  • 作为产物:
    描述:
    trans-1-iodo-3,5-hexadiene苯乙酸甲酯lithium hexamethyldisilazane 作用下, 以 四氢呋喃六甲基磷酰三胺 为溶剂, 反应 20.0h, 以87%的产率得到(+/-)-methyl 2-(E)-phenylocta-5,7-dienoate
    参考文献:
    名称:
    通过分子内施密特反应的区域化学的阳离子-π控制合成中桥扭曲内酰胺
    摘要:
    可以通过 2-叠氮烷基酮的分子内施密特反应合成中等桥连扭曲酰胺。在这些反应中,由于在与酮相邻的 α 位存在芳族基团,施密特反应的区域化学被转移到通常不受欢迎的途径中,这通过参与非键合阳离子来稳定叠氮醇中间体的主要反应性构象-π 与带正电的重氮阳离子相互作用。这导致很少观察到叠氮烷基链远端的 C-C 键重排。该反应途径还要求含叠氮化物的系链位于关键叠氮醇中间体的轴向。检查芳环取代对施密特反应的区域化学的影响表明,具有更多富电子芳基会增加迁移选择性。当吸电子取代基置于芳环上时,选择性较低。当路易斯酸与芳环上的取代基配位时,阳离子-π相互作用作为控制元素的能力降低。施密特反应的开发版本提供了对具有 [4.3.1] 双环系统的中等桥连扭曲酰胺家族的直接访问,使用其他当前可用的方法很难访问这些化合物。当路易斯酸与芳环上的取代基配位时,阳离子-π相互作用作为控制元素的能力降低。施密特反应的开发版本提供了对具有
    DOI:
    10.1021/jo902574m
点击查看最新优质反应信息