Smart Stimuli-Responsive Spherical Nanostructures Constructed from Supramolecular Metallodendrimers via Hierarchical Self-Assembly
摘要:
In this article, we present the design and construction of a series of supramolecular poly(benzyl ether) metallodendrimers featuring a well-defined hexagonal metallacycle at their cores via coordination-driven self-assembly. It was found that the second generation metallodendrimer 3c was able to hierarchically self-assemble into the regular vesicle-like structures. These nanoscale vesicles were monodisperse in shape and relatively monodisperse in size as detected in SEM, TEM, AFM, and DLS experiments. Notably, this kind of hierarchically formed vesicle-like nanostructure adopted a discrete metallacycle as the main skeleton, which is obviously different from many previous reports of nanoscale spherical architectures. Moreover, such supramolecular vesicle-like structures could encapsulate some fluorescent molecules, like BODIPY and SRB, etc. By taking advantage of the dynamic nature of metal ligand bonds, the disassembly and reassembly of the hexagonal cavity core could be reversibly controlled by the addition and removal of bromide ions, resulting in the transition from the vesicles to micelles. Thus, the controlled release of fluorescence dye was successfully realized by the halide-induced vesicles micelles transition. These findings not only enrich the library of supramolecular metallodenrimers but also provide a new avenue to the construction of novel "smart" nanomaterials, which have potential application in functional molecules delivery and release.
Stimuli-Responsive Supramolecular Gels through Hierarchical Self-Assembly of Discrete Rhomboidal Metallacycles
作者:Guang-Zhen Zhao、Li-Jun Chen、Wei Wang、Jing Zhang、Guang Yang、De-Xian Wang、Yihua Yu、Hai-Bo Yang
DOI:10.1002/chem.201301385
日期:2013.7.29
A new class of supramolecular organometallic gels with a discreterhomboidalmetallacycle as the main skeleton was fabricated throughhierarchical self‐assembly (see figure). More importantly, by taking advantage of the dynamic nature of metal–ligand bonds, the stimuli‐responsive gel–sol transition of the obtained gels was realized by disassembly and reassembly of the rhomboidal scaffold as controlled
In this article, we present the design and construction of a series of supramolecular poly(benzyl ether) metallodendrimers featuring a well-defined hexagonal metallacycle at their cores via coordination-driven self-assembly. It was found that the second generation metallodendrimer 3c was able to hierarchically self-assemble into the regular vesicle-like structures. These nanoscale vesicles were monodisperse in shape and relatively monodisperse in size as detected in SEM, TEM, AFM, and DLS experiments. Notably, this kind of hierarchically formed vesicle-like nanostructure adopted a discrete metallacycle as the main skeleton, which is obviously different from many previous reports of nanoscale spherical architectures. Moreover, such supramolecular vesicle-like structures could encapsulate some fluorescent molecules, like BODIPY and SRB, etc. By taking advantage of the dynamic nature of metal ligand bonds, the disassembly and reassembly of the hexagonal cavity core could be reversibly controlled by the addition and removal of bromide ions, resulting in the transition from the vesicles to micelles. Thus, the controlled release of fluorescence dye was successfully realized by the halide-induced vesicles micelles transition. These findings not only enrich the library of supramolecular metallodenrimers but also provide a new avenue to the construction of novel "smart" nanomaterials, which have potential application in functional molecules delivery and release.