摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4-(N-Methyl-acetamino)-antipyrin | 15421-74-6

中文名称
——
中文别名
——
英文名称
4-(N-Methyl-acetamino)-antipyrin
英文别名
N-(1,5-dimethyl-3-oxo-2-phenylpyrazol-4-yl)-N-methylacetamide
4-(N-Methyl-acetamino)-antipyrin化学式
CAS
15421-74-6
化学式
C14H17N3O2
mdl
——
分子量
259.308
InChiKey
ATXGXLFQLOOFBE-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.2
  • 重原子数:
    19
  • 可旋转键数:
    2
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.29
  • 拓扑面积:
    43.9
  • 氢给体数:
    0
  • 氢受体数:
    3

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    4-(N-Methyl-acetamino)-antipyrin盐酸 作用下, 以85%的产率得到4-(甲氨基)安替比林
    参考文献:
    名称:
    NMR-Derived Models of Amidopyrine and Its Metabolites in Complexes with Rabbit Cytochrome P450 2B4 Reveal a Structural Mechanism of Sequential N-Dealkylation
    摘要:
    To understand the molecular basis of sequential N-dealkylation by cytochrome P450 2B enzymes, we studied the binding of amidopyrine (AP) as well as the metabolites of this reaction, desmethylamidopyrine (DMAP) and aminoantipyrine (AAP), using the X-ray crystal structure of rabbit P450 2B4 and two nuclear magnetic resonance (NMR) techniques: saturation transfer difference (STD) spectroscopy and longitudinal (T-1) relaxation NMR. Results of STD NMR of AP and its metabolites bound to P450 2B4 were similar, suggesting that they occupy similar niches within the enzyme's active site. The model-dependent relaxation rates (R-M) determined from T-1 relaxation NMR of AP and DMAP suggest that the N-linked methyl is closest to the heme. To determine the orientation(s) of AP and its metabolites within the P450 2B4 active site, we used distances calculated from the relaxation rates to constrain the metabolites to the X-ray crystal structure of P450 2B4. Simulated annealing of the complex revealed that the metabolites do indeed occupy similar hydrophobic pockets within the active site, while the N-linked methyls are free to rotate between two binding modes. From these bound structures, a model of N-demethylation in which the N-linked methyl functional groups rotate between catalytic and noncatalytic positions was developed. This study is the first to provide a structural model of a drug and its metabolites complexed to a c-ytochrome P450 based on NMR and to provide a structural mechanism for how a drug can undergo sequential oxidations without unbinding. The rotation of the amide functional group might represent a common structural mechanism for N-dealkylation reactions for other drugs such as the local anesthetic lidocaine.
    DOI:
    10.1021/bi101797v
  • 作为产物:
    描述:
    4-乙酰氨基安替比林碘甲烷 在 sodium hydride 作用下, 以 四氢呋喃 、 mineral oil 为溶剂, 以86%的产率得到4-(N-Methyl-acetamino)-antipyrin
    参考文献:
    名称:
    NMR-Derived Models of Amidopyrine and Its Metabolites in Complexes with Rabbit Cytochrome P450 2B4 Reveal a Structural Mechanism of Sequential N-Dealkylation
    摘要:
    To understand the molecular basis of sequential N-dealkylation by cytochrome P450 2B enzymes, we studied the binding of amidopyrine (AP) as well as the metabolites of this reaction, desmethylamidopyrine (DMAP) and aminoantipyrine (AAP), using the X-ray crystal structure of rabbit P450 2B4 and two nuclear magnetic resonance (NMR) techniques: saturation transfer difference (STD) spectroscopy and longitudinal (T-1) relaxation NMR. Results of STD NMR of AP and its metabolites bound to P450 2B4 were similar, suggesting that they occupy similar niches within the enzyme's active site. The model-dependent relaxation rates (R-M) determined from T-1 relaxation NMR of AP and DMAP suggest that the N-linked methyl is closest to the heme. To determine the orientation(s) of AP and its metabolites within the P450 2B4 active site, we used distances calculated from the relaxation rates to constrain the metabolites to the X-ray crystal structure of P450 2B4. Simulated annealing of the complex revealed that the metabolites do indeed occupy similar hydrophobic pockets within the active site, while the N-linked methyls are free to rotate between two binding modes. From these bound structures, a model of N-demethylation in which the N-linked methyl functional groups rotate between catalytic and noncatalytic positions was developed. This study is the first to provide a structural model of a drug and its metabolites complexed to a c-ytochrome P450 based on NMR and to provide a structural mechanism for how a drug can undergo sequential oxidations without unbinding. The rotation of the amide functional group might represent a common structural mechanism for N-dealkylation reactions for other drugs such as the local anesthetic lidocaine.
    DOI:
    10.1021/bi101797v
点击查看最新优质反应信息