Enzymatic α(1→2)-l-fucosylation: investigation of the specificity of the α(1→2)-l-galactosyltransferase from Helix pomatia
摘要:
The alpha(1-->2)-L-galactosyltransferase from Helix pomatia transfers an L-fucosyl residue from GDP-L-Fucose to a terminal, non-reducin D-galactopyranosyl moiety of an oligosaccharide. The extent of the enzyme's specificity towards the stereochemistry at the D-galactopyranosyl anomeric centre, the site of interglycosidic linkage and the nature of the subterminal oliaosaccharide residue has been investigated using HPAEC-PAD and MALDI-TOF technology. This alpha(1-->2)-L-galactosyltransferase is specific for D-galactopyranosyl beta-linkages, independent of the site of the interglycosidic linkage and aglycone configuration and with limited specificity for the nature of the subterminal sugar residue. (C) 2003 Elsevier Ltd. All rights reserved.
The alpha(1-->2)-L-galactosyltransferase from Helix pomatia transfers an L-fucosyl residue from GDP-L-Fucose to a terminal, non-reducin D-galactopyranosyl moiety of an oligosaccharide. The extent of the enzyme's specificity towards the stereochemistry at the D-galactopyranosyl anomeric centre, the site of interglycosidic linkage and the nature of the subterminal oliaosaccharide residue has been investigated using HPAEC-PAD and MALDI-TOF technology. This alpha(1-->2)-L-galactosyltransferase is specific for D-galactopyranosyl beta-linkages, independent of the site of the interglycosidic linkage and aglycone configuration and with limited specificity for the nature of the subterminal sugar residue. (C) 2003 Elsevier Ltd. All rights reserved.
Fast and efficient synthesis of a novel homologous series of l-fucosylated trisaccharides using the Helix pomatia α-(1→2)-l-galactosyltransferase
The alpha-(1-->2)-L-galactosyltransferase from the albumen gland of the vineyard snail Helix pomatia exhibits high alpha-(1-->2)-L-fucosyltransferase activity and can be used to transfer L-fucose from GDP-L-fucose to terminal, non-reducing D-galactose residues of an oligosaccharide, thus providing facile access to a range of H-antigen-containing oligosaccharides. The enzymatic glycosylation was applied