摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1-Bromo-2-oxo-cyclooctanecarboxylic acid ethyl ester | 91214-58-3

中文名称
——
中文别名
——
英文名称
1-Bromo-2-oxo-cyclooctanecarboxylic acid ethyl ester
英文别名
ethyl 1-bromo-2-oxocyclooctane-1-carboxylate
1-Bromo-2-oxo-cyclooctanecarboxylic acid ethyl ester化学式
CAS
91214-58-3
化学式
C11H17BrO3
mdl
——
分子量
277.158
InChiKey
JPPRNEDYZUYNHU-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.61
  • 重原子数:
    15.0
  • 可旋转键数:
    2.0
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.82
  • 拓扑面积:
    43.37
  • 氢给体数:
    0.0
  • 氢受体数:
    3.0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Radical Chain Reactions of α-Azido-β-keto Esters with Tributyltin Hydride. A Novel Entry to Amides and Lactams through Regiospecific Nitrogen Insertion
    摘要:
    A variety of acyclic and carbocyclic alpha-azido-beta-keto esters have been readily prepared from the parent dicarbonyl compounds, and their radical chain reactions with tributyltin hydride have been investigated. These reactions normally result in efficient production of alkoxycarbonyl-substituted amides and lactams and thence provide a new, useful method for regiospecific nitrogen insertion of keto ester compounds. The likely mechanism entails initial addition of tributylstannyl radical to the azido moiety to give a stannylaminyl radical, which readily undergoes intramolecular three-membered cyclization onto the ketone group to form an alkoxyl radical. The alkoxyl radical then undergoes regiospecific beta-scissian to form a stable ring-opened radical that is eventually reduced by tributyltin hydride to propagate the chain. With certain substrates, concomitant deazidation occurs to an important extent. This process, which is unusually observed in radical reactions of alkyl azides, is ascribed to addition of the stannyl radical to the terminal azido nitrogen; subsequent fragmentation of the ensuing 1,3-triazenyl adduct gives stannyl azide and a deazidated alkyl radical, resonance-stabilized by the adjacent carbonyl groups. The radical reactions of 2-azido-2-(ethoxy-carbonyl)-1-tetralone with allyltributylstannane and allyltriphenylstannane have also been investigated with the (missed) aim to achieve nitrogen insertion and concomitant allylation.
    DOI:
    10.1021/jo990837g
  • 作为产物:
    参考文献:
    名称:
    Radical Chain Reactions of α-Azido-β-keto Esters with Tributyltin Hydride. A Novel Entry to Amides and Lactams through Regiospecific Nitrogen Insertion
    摘要:
    A variety of acyclic and carbocyclic alpha-azido-beta-keto esters have been readily prepared from the parent dicarbonyl compounds, and their radical chain reactions with tributyltin hydride have been investigated. These reactions normally result in efficient production of alkoxycarbonyl-substituted amides and lactams and thence provide a new, useful method for regiospecific nitrogen insertion of keto ester compounds. The likely mechanism entails initial addition of tributylstannyl radical to the azido moiety to give a stannylaminyl radical, which readily undergoes intramolecular three-membered cyclization onto the ketone group to form an alkoxyl radical. The alkoxyl radical then undergoes regiospecific beta-scissian to form a stable ring-opened radical that is eventually reduced by tributyltin hydride to propagate the chain. With certain substrates, concomitant deazidation occurs to an important extent. This process, which is unusually observed in radical reactions of alkyl azides, is ascribed to addition of the stannyl radical to the terminal azido nitrogen; subsequent fragmentation of the ensuing 1,3-triazenyl adduct gives stannyl azide and a deazidated alkyl radical, resonance-stabilized by the adjacent carbonyl groups. The radical reactions of 2-azido-2-(ethoxy-carbonyl)-1-tetralone with allyltributylstannane and allyltriphenylstannane have also been investigated with the (missed) aim to achieve nitrogen insertion and concomitant allylation.
    DOI:
    10.1021/jo990837g
点击查看最新优质反应信息