摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

10-N-(8-hydroxyoctyl)-2-(trifluoromethyl)phenothiazine | 183899-74-3

中文名称
——
中文别名
——
英文名称
10-N-(8-hydroxyoctyl)-2-(trifluoromethyl)phenothiazine
英文别名
8-[2-(trifluoromethyl)phenothiazin-10-yl]octan-1-ol
10-N-(8-hydroxyoctyl)-2-(trifluoromethyl)phenothiazine化学式
CAS
183899-74-3
化学式
C21H24F3NOS
mdl
——
分子量
395.489
InChiKey
WIXAZFZHHJNPNX-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    498.9±45.0 °C(Predicted)
  • 密度:
    1.219±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    6.64
  • 重原子数:
    27.0
  • 可旋转键数:
    8.0
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.43
  • 拓扑面积:
    23.47
  • 氢给体数:
    1.0
  • 氢受体数:
    3.0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    10-N-(8-hydroxyoctyl)-2-(trifluoromethyl)phenothiazine重铬酸吡啶盐酸羟胺sodium carbonate 作用下, 以 四氢呋喃二氯甲烷 为溶剂, 反应 3.0h, 生成 (Z)-10-N-(7-oximinooctyl)-2-(trifluoromethyl)phenothiazine
    参考文献:
    名称:
    N-Oxygenation of Primary Amines and Hydroxylamines and Retroreduction of Hydroxylamines by Adult Human Liver Microsomes and Adult Human Flavin-Containing Monooxygenase 3
    摘要:
    Adult human liver microsomes catalyze the NADPH-dependent N-oxygenation of 10-N-(n-octylamino)-2-(trifluoromethyl)phenothiazine to the corresponding oximes through the intermediacy of the hydroxylamine. In the presence of adult human liver microsomes, the primary amine is stereoselectively converted to the cis-oxime, but addition of the alternative competitive substrate hydroxylamine hydrochloride apparently decreases the amount of aliphatic hydroxylamine retroreduction because an increase in oxime formation was observed. In the presence of hydroxylamine hydrochloride, however, the oxime product recovered was formed with very low stereoselectivity. Studies on the biochemical mechanism of oxime formation suggested that cis-oxime formation in the presence of adult human liver microsomes was largely dependent on the human flavin-containing monooxygenase (form 3). This conclusion is based on the effects of incubation conditions on product formation when compared to results observed in the presence of cDNA-expressed human FMO3. The retroreduction of the intermediate hydroxylamine was dependent on NADPH but was not catalyzed by human flavin-containing monooxygenase (form 3) or any one of seven prominent cytochromes P-450 that have been well-characterized in the human liver microsomes examined. The results suggest that aliphatic primary amines are efficiently sequentially N-oxygenated in the presence of human liver microsomes to hydroxylamines and then to oximes mainly by the human flavin-containing monooxygenase. Retroreduction of the intermediate hydroxylamine is apparently facilitated by a novel but as yet poorly characterized enzyme system that does not employ any of the currently known well-characterized cytochrome P-450 enzymes present in adult human liver microsomes.
    DOI:
    10.1021/tx9600614
  • 作为产物:
    描述:
    8-溴-1-辛醇2-三氟甲基吩噻嗪 在 sodium hydride 作用下, 以 四氢呋喃 为溶剂, 反应 6.5h, 以55%的产率得到10-N-(8-hydroxyoctyl)-2-(trifluoromethyl)phenothiazine
    参考文献:
    名称:
    N-Oxygenation of Primary Amines and Hydroxylamines and Retroreduction of Hydroxylamines by Adult Human Liver Microsomes and Adult Human Flavin-Containing Monooxygenase 3
    摘要:
    Adult human liver microsomes catalyze the NADPH-dependent N-oxygenation of 10-N-(n-octylamino)-2-(trifluoromethyl)phenothiazine to the corresponding oximes through the intermediacy of the hydroxylamine. In the presence of adult human liver microsomes, the primary amine is stereoselectively converted to the cis-oxime, but addition of the alternative competitive substrate hydroxylamine hydrochloride apparently decreases the amount of aliphatic hydroxylamine retroreduction because an increase in oxime formation was observed. In the presence of hydroxylamine hydrochloride, however, the oxime product recovered was formed with very low stereoselectivity. Studies on the biochemical mechanism of oxime formation suggested that cis-oxime formation in the presence of adult human liver microsomes was largely dependent on the human flavin-containing monooxygenase (form 3). This conclusion is based on the effects of incubation conditions on product formation when compared to results observed in the presence of cDNA-expressed human FMO3. The retroreduction of the intermediate hydroxylamine was dependent on NADPH but was not catalyzed by human flavin-containing monooxygenase (form 3) or any one of seven prominent cytochromes P-450 that have been well-characterized in the human liver microsomes examined. The results suggest that aliphatic primary amines are efficiently sequentially N-oxygenated in the presence of human liver microsomes to hydroxylamines and then to oximes mainly by the human flavin-containing monooxygenase. Retroreduction of the intermediate hydroxylamine is apparently facilitated by a novel but as yet poorly characterized enzyme system that does not employ any of the currently known well-characterized cytochrome P-450 enzymes present in adult human liver microsomes.
    DOI:
    10.1021/tx9600614
点击查看最新优质反应信息

同类化合物

()-2-(5-甲基-2-氧代苯并呋喃-3(2)-亚乙基)乙酸乙酯 (双(2,2,2-三氯乙基)) (乙基N-(1H-吲唑-3-基羰基)ethanehydrazonoate) (Z)-3-[[[2,4-二甲基-3-(乙氧羰基)吡咯-5-基]亚甲基]吲哚-2--2- (S)-(-)-5'-苄氧基苯基卡维地洛 (S)-(-)-2-(α-(叔丁基)甲胺)-1H-苯并咪唑 (S)-(-)-2-(α-甲基甲胺)-1H-苯并咪唑 (S)-氨氯地平-d4 (S)-8-氟苯并二氢吡喃-4-胺 (S)-4-(叔丁基)-2-(喹啉-2-基)-4,5-二氢噁唑 (S)-4-氯-1,2-环氧丁烷 (S)-3-(2-(二氟甲基)吡啶-4-基)-7-氟-3-(3-(嘧啶-5-基)苯基)-3H-异吲哚-1-胺 (S)-2-(环丁基氨基)-N-(3-(3,4-二氢异喹啉-2(1H)-基)-2-羟丙基)异烟酰胺 (SP-4-1)-二氯双(喹啉)-钯 (SP-4-1)-二氯双(1-苯基-1H-咪唑-κN3)-钯 (R,S)-可替宁N-氧化物-甲基-d3 (R,S)-六氢-3H-1,2,3-苯并噻唑-2,2-二氧化物-3-羧酸叔丁酯 (R)-(+)-5'-苄氧基卡维地洛 (R)-(+)-2,2'',6,6''-四甲氧基-4,4''-双(二苯基膦基)-3,3''-联吡啶(1,5-环辛二烯)铑(I)四氟硼酸盐 (R)-卡洛芬 (R)-N'-亚硝基尼古丁 (R)-DRF053二盐酸盐 (R)-4-异丙基-2-恶唑烷硫酮 (R)-3-甲基哌啶盐酸盐; (R)-2-苄基哌啶-1-羧酸叔丁酯 (N-(Boc)-2-吲哚基)二甲基硅烷醇钠 (N-{4-[(6-溴-2-氧代-1,3-苯并恶唑-3(2H)-基)磺酰基]苯基}乙酰胺) (E)-2-氰基-3-(5-(2-辛基-7-(4-(对甲苯基)-1,2,3,3a,4,8b-六氢环戊[b]吲哚-7-基)-2H-苯并[d][1,2,3]三唑-4-基)噻吩-2-基)丙烯酸 (E)-2-氰基-3-[5-(2,5-二氯苯基)呋喃-2-基]-N-喹啉-8-基丙-2-烯酰胺 (8α,9S)-(+)-9-氨基-七氢呋喃-6''-醇,值90% (6R,7R)-7-苯基乙酰胺基-3-[(Z)-2-(4-甲基噻唑-5-基)乙烯基]-3-头孢唑啉-4-羧酸二苯甲基酯 (6-羟基嘧啶-4-基)乙酸 (6,7-二甲氧基-4-(3,4,5-三甲氧基苯基)喹啉) (6,6-二甲基-3-(甲硫基)-1,6-二氢-1,2,4-三嗪-5(2H)-硫酮) (5aS,6R,9S,9aR)-5a,6,7,8,9,9a-六氢-6,11,11-三甲基-2-(2,3,4,5,6-五氟苯基)-6,9-甲基-4H-[1,2,4]三唑[3,4-c][1,4]苯并恶嗪四氟硼酸酯 (5R,Z)-3-(羟基((1R,2S,6S,8aS)-1,3,6-三甲基-2-((E)-prop-1-en-1-yl)-1,2,4a,5,6,7,8,8a-八氢萘-1-基)亚甲基)-5-(羟甲基)-1-甲基吡咯烷-2,4-二酮 (5E)-5-[(2,5-二甲基-1-吡啶-3-基-吡咯-3-基)亚甲基]-2-亚磺酰基-1,3-噻唑烷-4-酮 (5-(4-乙氧基-3-甲基苄基)-1,3-苯并二恶茂) (5-溴-3-吡啶基)[4-(1-吡咯烷基)-1-哌啶基]甲酮 (5-氯-2,1,3-苯并噻二唑-4-基)-氨基甲氨基硫代甲酸甲酯一氢碘 (5-氨基-6-氰基-7-甲基[1,2]噻唑并[4,5-b]吡啶-3-甲酰胺) (5-氨基-1,3,4-噻二唑-2-基)甲醇 (4aS-反式)-八氢-1H-吡咯并[3,4-b]吡啶 (4aS,9bR)-6-溴-2,3,4,4a,5,9b-六氢-1H-吡啶并[4,3-B]吲哚 (4S,4''S)-2,2''-环亚丙基双[4-叔丁基-4,5-二氢恶唑] (4-(4-氯苯基)硫代)-10-甲基-7H-benzimidazo(2,1-A)奔驰(德)isoquinolin-7一 (4-苄基-2-甲基-4-nitrodecahydropyrido〔1,2-a][1,4]二氮杂) (4-甲基环戊-1-烯-1-基)(吗啉-4-基)甲酮 (4-己基-2-甲基-4-nitrodecahydropyrido〔1,2-a][1,4]二氮杂) (4,5-二甲氧基-1,2,3,6-四氢哒嗪)