Iron-catalyzed oxidative synthesis of N-heterocycles from primary alcohols
作者:Dan Zhao、Yu-Ren Zhou、Qi Shen、Jian-Xin Li
DOI:10.1039/c3ra46363j
日期:——
An iron-catalyzed one-pot one-step oxidative system has been successfully developed in the conversion of primary alcohols into nitrogen-containing heterocycles, such as quinazolinone, quinazoline and 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide derivatives.
在伯醇转化为含氮杂环(如喹唑啉酮,喹唑啉和3,4-二氢-2 H -1,2,4-苯并噻二嗪)中,已成功开发出铁催化的一锅一步氧化系统。1,1-二氧化物衍生物。
Oxidative synthesis of quinazolinones and benzothiadiazine 1,1-dioxides from 2-aminobenzamide and 2-aminobenzenesulfonamide with benzyl alcohols and aldehydes
An interesting procedure for the zinc-catalyzed oxidative transformation of ready available 2-aminobenzamide, 2-aminobenzenesulfonamide with benzyl alcohols has been developed. Various quinazolinones and benzothiadiazine 1,1-dioxides were prepared in moderate to good yields under identical conditions. The reactions of both aromatic aldehydes and aliphatic aldehydes with 2-aminobenzamide under catalyst free conditions were described as well. In water media, the products were formed in good yields.
Ruthenium-catalysed oxidative synthesis of heterocycles from alcohols
作者:Andrew J. A. Watson、Aoife C. Maxwell、Jonathan M. J. Williams
DOI:10.1039/c1ob06516e
日期:——
Ruthenium-catalysed hydrogen transfer has been successfully used for the conversion of alcohols into either 2,3-dihydroquinazolines or quinazolines. The choice of reaction conditions allows for the selective formation of either heterocycle and the methodology can also be applied to the sulfonamide analogue.
Structure–function analysis of the C-3 position in analogues of microbial behavioural modulators HHQ and PQS
作者:F. Jerry Reen、Sarah L. Clarke、Claire Legendre、Christina M. McSweeney、Kevin S. Eccles、Simon E. Lawrence、Fergal O'Gara、Gerard P. McGlacken
DOI:10.1039/c2ob26823j
日期:——
2-Heptyl-3-hydroxy-4-quinolone (PQS) and its precursor 2-heptyl-4-quinolone (HHQ) are key signalling molecules of the important nosocomial pathogen Pseudomonas aeruginosa. We have recently reported an interkingdom dimension to these molecules, influencing key virulence traits in a broad spectrum of microbial species and in the human pathogenic yeast Candida albicans. For the first time, targeted chemical derivatisation of the C-3 position was undertaken to investigate the structural and molecular properties underpinning the biological activity of these compounds in P. aeruginosa, and using Bacillus subtilis as a suitable model system for investigating modulation of interspecies behaviour.