Palladium-Catalyzed Allylic Cross-Coupling Reactions of Primary and Secondary Homoallylic Electrophiles
作者:Benjamin J. Stokes、Susanne M. Opra、Matthew S. Sigman
DOI:10.1021/ja305403s
日期:2012.7.18
cross-coupling of homoallylic tosylate substrates using boronic acids and pinacol esters is reported. The reaction uses 2-(4,5-dihydro-2-oxazolyl)quinoline (quinox) as a ligand and is performed at ambient temperature. The scope of the reaction is broad in terms of both the boronate transmetalating reagent and the substrate and includes secondary tosylates. Mechanistic studies support an alkene-mediated
An efficient nickel-catalyzed regioselective hydroarylation of 1,3-dienes with arylhalides and using silanes as hydride source is developed, affording functionalized arenes in good to excellent yields under mild conditions. The protocol shows a high tolerance to various functional groups on both the dienes and aryl coupling partners. Mechanism studies indicate that π-allyl nickel species is likely
Direct coupling of alcohols with alkenylsilanes catalyzed by indium trichloride or bismuth tribromide
作者:Yoshihiro Nishimoto、Masayuki Kajioka、Takahiro Saito、Makoto Yasuda、Akio Baba
DOI:10.1039/b816072d
日期:——
Indium halides or bismuth halides catalyzed the coupling of various alcohols with alkenylsilanes to give the corresponding alkenes stereospecifically without any other activators.
Nickel-Catalyzed Denitrated Coupling Reaction of Nitroalkenes with Aliphatic and Aromatic Alkenes
作者:Na Zhang、Zheng-Jun Quan、Xi-Cun Wang
DOI:10.1002/adsc.201600586
日期:2016.10.20
A simple and practical denitrated coupling reaction of nitroalkenes with various alkenes using a nickel catalyst and triethoxysilane [(EtO)3SiH] as reducing agent was achieved. Under mild reaction conditions, both aliphatic and aromatic alkenes could react with nitroalkenes to obtain a series of olefins with different functional groups in satisfactory yields under an air atmosphere, which were previously
An efficient Fe(III)-catalyzed direct coupling of alkenes with alcohols and cross-coupling of alcohols with alcohols to give the corresponding substituted (E)-alkenes stereospecifically is demonstrated. Additionally, this reaction could be scaled up. The kinetic isotope effect (KIE) experiments indicated a typical secondary isotope effect in this process. Although benzylic alcohols were effective substrates, mild conditions, atom efficiency, environmental soundness, and stereospecificity are features that make this procedure very attractive.