Compositions and Methods for Modification of Biomolecules
申请人:JEWETT JOHN C.
公开号:US20110207147A1
公开(公告)日:2011-08-25
Provided are modified cycloalkyne compounds; and methods of use of such compounds in modifying biomolecules. Embodiments include a cycloaddition reaction that can be carried out under physiological conditions. The cycloaddition reaction involves reacting a modified cycloalkyne with an azide moiety on a target biomolecule, generating a covalently modified biomolecule. The selectivity of the reaction and its compatibility with aqueous environments provide for its application in vivo and in vitro.
COMPOSITIONS AND METHODS FOR MODIFICATION OF BIOMOLECULES
申请人:The Regents of the University of California
公开号:US20140045207A1
公开(公告)日:2014-02-13
Provided are modified cycloalkyne compounds; and methods of use of such compounds in modifying biomolecules. Embodiments include a cycloaddition reaction that can be carried out under physiological conditions. The cycloaddition reaction involves reacting a modified cycloalkyne with an azide moiety on a target biomolecule, generating a covalently modified biomolecule. The selectivity of the reaction and its compatibility with aqueous environments provide for its application in vivo and in vitro.
Compositions and methods for modification of biomolecules
申请人:Jewett John C.
公开号:US08519122B2
公开(公告)日:2013-08-27
Provided are modified cycloalkyne compounds; and methods of use of such compounds in modifying biomolecules. Embodiments include a cycloaddition reaction that can be carried out under physiological conditions. The cycloaddition reaction involves reacting a modified cycloalkyne with an azide moiety on a target biomolecule, generating a covalently modified biomolecule. The selectivity of the reaction and its compatibility with aqueous environments provide for its application in vivo and in vitro.
Reactivity of Biarylazacyclooctynones in Copper-Free Click Chemistry
作者:Chelsea G. Gordon、Joel L. Mackey、John C. Jewett、Ellen M. Sletten、K. N. Houk、Carolyn R. Bertozzi
DOI:10.1021/ja3000936
日期:2012.6.6
on BARAC’s aryl rings can alter the calculated transitionstate interaction energy of the cycloaddition through electronic effects or the calculated distortion energy through steric effects. Experimental data confirmed that electronic perturbation of BARAC’s aryl rings has a modest effect on reaction rate, whereas steric hindrance in the transitionstate can significantly retard the reaction. Drawing
环辛炔与叠氮化物的 1,3-偶极环加成反应,也称为“无铜点击化学”,是一种生物正交反应,在生物发现中具有广泛的应用。这种反应的动力学对于动态过程的研究至关重要,尤其是在活体中。在这里,我们使用密度泛函理论 (DFT) 畸变/相互作用过渡态模型,通过实验测量和计算研究,对应变和电子学对环辛炔与叠氮化物的反应性的影响进行了系统分析。特别是,我们专注于联芳氮杂环辛炔酮 (BARAC),因为它与叠氮化物的反应速度比任何其他报道的环辛炔都要快,并且其模块化合成有助于快速获得类似物。我们发现 BARAC 芳环上的取代基可以通过电子效应改变计算的环加成过渡态相互作用能或通过空间效应计算的畸变能。实验数据证实,BARAC 芳环的电子扰动对反应速率的影响不大,而过渡态的位阻会显着阻碍反应。利用这些结果,我们分析了使用 X 射线晶体学确定的炔键角与通过实验二阶速率常数量化的一系列环辛炔的反应性之间的关系。我们