摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(-)-6-fluoro-1-<(1'S,2'R)-2'-phenylcyclopropyl>-7-piperazino-1,4-dihydro-4-oxoquinoline-3-carboxylic acid | 103531-47-1

中文名称
——
中文别名
——
英文名称
(-)-6-fluoro-1-<(1'S,2'R)-2'-phenylcyclopropyl>-7-piperazino-1,4-dihydro-4-oxoquinoline-3-carboxylic acid
英文别名
6-fluoro-4-oxo-1-[(1S,2R)-2-phenylcyclopropyl]-7-piperazin-1-ylquinoline-3-carboxylic acid
(-)-6-fluoro-1-<(1'S,2'R)-2'-phenylcyclopropyl>-7-piperazino-1,4-dihydro-4-oxoquinoline-3-carboxylic acid化学式
CAS
103531-47-1
化学式
C23H22FN3O3
mdl
——
分子量
407.444
InChiKey
FNNPFNDZIMUNOD-BEFAXECRSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.3
  • 重原子数:
    30
  • 可旋转键数:
    4
  • 环数:
    5.0
  • sp3杂化的碳原子比例:
    0.3
  • 拓扑面积:
    72.9
  • 氢给体数:
    2
  • 氢受体数:
    7

反应信息

  • 作为产物:
    参考文献:
    名称:
    Chiral DNA gyrase inhibitors. 1. Synthesis and antimicrobial activity of the enantiomers of 6-fluoro-7-(1-piperazinyl)-1-(2-trans-phenylcyclopropyl)-1,4-dihydro-4-oxoquinoline-3-carboxylic acid
    摘要:
    New quinolone antimicrobial agents (racemic, (1'S,2'R)- and (1'R,2'S)-6-fluoro-7-(1-piperazinyl)-1-(2'-trans-phenyl-1'-cyclopropyl)- 1, 4-dihydro-4-oxoquinoline-3-carboxylic acids) were synthesized, and their in vitro antimicrobial potencies and spectra were determined. As compared to their conceptual parents, these agents retained a considerable amount of the antimicrobial potency and spectra of ciprofloxacin and of 6-fluoro-1-phenyl-7-(1-piperazinyl)-1,4-dihydro-4-oxoquinoline-3-carboxy lic acid against Gram-positives. Gram-negatives were considerably less sensitive. The (-)-(1'S,2'R) analogue was the more potent of the enantiomers, but the degree of chiral discrimination by most bacteria was only 4-fold. The 4-fold chiral discrimination was observed also using purified DNA gyrase obtained from Micrococcus luteus, whereas the two enantiomers were essentially equiactive against the enzyme derived from Escherichia coli. These results confirm that there is a substantial degree of bulk tolerance available at N-1 of quinolone antimicrobial agents and suggest that electronic factors controlled by substitution at that site are of considerable importance. On the other hand, chiral recognition brought about by attachment of optically active groups to the N-1 position in these derivatives is relatively small.
    DOI:
    10.1021/jm00160a042
点击查看最新优质反应信息

文献信息

  • Compounds and Methods for modulating the Silencing of a Polynucleotide of Interest
    申请人:Peng Jin
    公开号:US20090306035A1
    公开(公告)日:2009-12-10
    Methods and compositions comprising chemical compounds that modulate the silencing of a polynucleotide of interest in a cell are provided. Such chemical compounds when used in combination with an appropriate silencing element can be used to modulate (increase or decrease) the level of the polynucleotide targeted by the silencing element. Methods of using such compositions both in therapies involving RNAi-mediated suppression of gene expression, as well as, in vitro methods that allow for the targeted modulation of expression of a polynucleotide of interest are provided. Pharmaceutical or cosmetic formulations comprising such compounds and silencing elements also are disclosed. Methods for screening a compound of interest for the ability to modulate the activity of a heterologous silencing element also are provided.
  • Chiral DNA gyrase inhibitors. 1. Synthesis and antimicrobial activity of the enantiomers of 6-fluoro-7-(1-piperazinyl)-1-(2-trans-phenylcyclopropyl)-1,4-dihydro-4-oxoquinoline-3-carboxylic acid
    作者:Lester A. Mitscher、Padam N. Sharma、Daniel T. W. Chu、Linus L. Shen、Andre G. Pernet
    DOI:10.1021/jm00160a042
    日期:1986.10
    New quinolone antimicrobial agents (racemic, (1'S,2'R)- and (1'R,2'S)-6-fluoro-7-(1-piperazinyl)-1-(2'-trans-phenyl-1'-cyclopropyl)- 1, 4-dihydro-4-oxoquinoline-3-carboxylic acids) were synthesized, and their in vitro antimicrobial potencies and spectra were determined. As compared to their conceptual parents, these agents retained a considerable amount of the antimicrobial potency and spectra of ciprofloxacin and of 6-fluoro-1-phenyl-7-(1-piperazinyl)-1,4-dihydro-4-oxoquinoline-3-carboxy lic acid against Gram-positives. Gram-negatives were considerably less sensitive. The (-)-(1'S,2'R) analogue was the more potent of the enantiomers, but the degree of chiral discrimination by most bacteria was only 4-fold. The 4-fold chiral discrimination was observed also using purified DNA gyrase obtained from Micrococcus luteus, whereas the two enantiomers were essentially equiactive against the enzyme derived from Escherichia coli. These results confirm that there is a substantial degree of bulk tolerance available at N-1 of quinolone antimicrobial agents and suggest that electronic factors controlled by substitution at that site are of considerable importance. On the other hand, chiral recognition brought about by attachment of optically active groups to the N-1 position in these derivatives is relatively small.
查看更多