摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

6-Sulfoquinovose(1-)

中文名称
——
中文别名
——
英文名称
6-Sulfoquinovose(1-)
英文别名
[(2S,3S,4S,5R)-3,4,5,6-tetrahydroxyoxan-2-yl]methanesulfonate
6-Sulfoquinovose(1-)化学式
CAS
——
化学式
C6H11O8S-
mdl
——
分子量
243.21
InChiKey
QFBWOLBPVQLZEH-GASJEMHNSA-M
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -3.7
  • 重原子数:
    15
  • 可旋转键数:
    1
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    156
  • 氢给体数:
    4
  • 氢受体数:
    8

反应信息

  • 作为反应物:
    描述:
    6-Sulfoquinovose(1-) 生成 6-deoxy-6-sulfo-D-fructose
    参考文献:
    名称:
    Sulphoglycolysis in Escherichia coli K-12 closes a gap in the biogeochemical sulphur cycle
    摘要:
    路径,目前尚未有细菌被完全鉴定。这项研究表明,大肠杆菌K-12是最广泛研究的原核生物模型,它能够进行硫代糖酵解以及标准的糖酵解。一个十基因簇编码了将硫代葡萄糖酸降解为二羟基丙酮磷酸盐所需的所有酶。几乎所有的现有大肠杆菌基因组中都存在相同的基因簇,并且在肠杆菌科中广泛存在。作者认为,这种新定义的途径可能代表了生物地球化学硫循环的重要组成部分,并且可能在所有杂食动物和草食动物的消化道细菌以及植物病原体中发挥重要作用。硫代葡萄糖酸(SQ,6-脱氧-6-硫代葡萄糖)作为植物硫脂的极性头部组,在所有高等植物、苔藓、蕨类、藻类和大多数光合细菌的光合膜中已有50年的历史。它也存在于一些非光合细菌中,并且SQ是某些古细菌表面层的一部分。SQ的年产量估计为100亿吨(1000000000000吨),因此它构成了自然界中有机硫的主要部分,其中SQ被细菌降解。然而,尽管有证据表明至少存在三种不同的降解路径,目前尚未有细菌被完全鉴定。这项研究表明,大肠杆菌K-12是最广泛研究的原核生物模型,它能够进行硫代糖酵解以及标准的糖酵解
    DOI:
    10.1038/nature12947
  • 作为产物:
    描述:
    a 6-sulfo-α-D-quinovosyldiacylglycerol 、 生成 6-Sulfoquinovose(1-) 、 a 1,2-diacyl-sn-glycerol
    参考文献:
    名称:
    YihQ is a sulfoquinovosidase that cleaves sulfoquinovosyl diacylglyceride sulfolipids
    摘要:
    YihQ 可水解磺基喹诺酮糖二酰甘油(SQDG)中的糖苷键,形成磺基喹诺酮糖(SQ)。晶体结构分析揭示了 YihQ 对 SQ 的特异性所需的活性位点残基,并可确定其他 YihQ 同源物。 磺基喹诺酮糖由光合生物以每年 1010 吨的速度产生,并作为碳和硫的来源被细菌降解。我们发现大肠杆菌 YihQ 是第一个专用的磺基喹诺酮糖苷酶,也是通往硫代糖苷途径的关口酶。结构和诱变研究揭示了与不同磺酸残基结合的序列特征,并揭示了磺基喹诺酮苷的降解在生命树中广泛存在。
    DOI:
    10.1038/nchembio.2023
点击查看最新优质反应信息

文献信息

  • Entner–Doudoroff pathway for sulfoquinovose degradation in <i>Pseudomonas putida</i> SQ1
    作者:Ann-Katrin Felux、Dieter Spiteller、Janosch Klebensberger、David Schleheck
    DOI:10.1073/pnas.1507049112
    日期:2015.8.4
    Significance

    Phototrophic organisms worldwide produce estimated 10 gigatons of sulfoquinovose (SQ) per year; hence, complete degradation of SQ by bacteria is an important part of the biogeochemical sulfur cycle. Here, we show that Pseudomonas putida SQ1 catabolizes SQ to 3-sulfolactate (SL) in analogy to the Entner–Doudoroff pathway for glucose-6-phosphate, involving five newly discovered reactions, enzymes, and genes, and three newly discovered organosulfur intermediates. The SL can be mineralized by other bacteria, thus closing the sulfur cycle within a bacterial community. The genes for the SQ Entner–Doudoroff pathway can be found in genomes of a wide range of Proteobacteria, which shows that SQ utilization is a widespread and important, but still underrecognized, trait of bacteria in all environments where SQ is produced and degraded.

    意义

    全球光合生物每年产生约10千亿吡烯醇磺醇(SQ),因此,细菌对SQ的完全降解是生物地球化学硫循环的重要部分。在这里,我们展示了Pseudomonas putida SQ1类似于葡萄糖-6-磷酸的恩特纳-道杜夫途径,通过五个新发现的反应、酶和基因,以及三个新发现的有机硫中间体,将SQ降解为3-磺酸内酯(SL)。SL可以被其他细菌矿化,从而在细菌群落内完成硫循环。 SQ恩特纳-道杜夫途径的基因可以在广泛的变形菌类基因组中找到,这表明SQ利用是在产生和降解SQ的所有环境中广泛而重要的,但仍未被充分认识的细菌特征。

  • Sulphoglycolysis in Escherichia coli K-12 closes a gap in the biogeochemical sulphur cycle
    作者:Karin Denger、Michael Weiss、Ann-Katrin Felux、Alexander Schneider、Christoph Mayer、Dieter Spiteller、Thomas Huhn、Alasdair M. Cook、David Schleheck
    DOI:10.1038/nature12947
    日期:2014.3
    Escherichia coli K-12 performs sulphoglycolysis; heterologous expression of enzymes encoded in a ten-gene cluster present in almost all (>91%) available E. coli genomes is used to show that sulphoquinovose is catabolised through four reactions to produce dihydroxyacetone phosphate, which powers energy conservation and growth, and a sulphonate product, which is excreted. The monosaccharide sugar sulphoquinovose is a major component of the biological sulphur cycle, distributed widely in photosynthetic membranes and also in some non-photosynthetic bacteria and archaea. There is evidence for three different degradative pathways for sulphoquinovose in bacteria, but until now none had been fully characterized. This study shows that Escherichia coli K-12, the most widely-studied prokaryotic model organism, can perform sulphoglycolysis as well as standard glycolysis. A ten-gene cluster encodes all the enzymes needed to degrade sulphoquinovose to dihydroxyacetone phosphate. The same gene cluster is present in almost all available E. coli genomes and is widespread among the Enterobacteriaceae. The authors suggest that this newly defined pathway may represent a substantial part of the biogeochemical sulphur cycle, and may have a significant role in bacteria in the alimentary tract of all omnivores and herbivores, and in plant pathogens. Sulphoquinovose (SQ, 6-deoxy-6-sulphoglucose) has been known for 50 years as the polar headgroup of the plant sulpholipid1,2 in the photosynthetic membranes of all higher plants, mosses, ferns, algae and most photosynthetic bacteria3. It is also found in some non-photosynthetic bacteria4, and SQ is part of the surface layer of some Archaea5. The estimated annual production of SQ4 is 10,000,000,000 tonnes (10 petagrams), thus it comprises a major portion of the organo-sulphur in nature, where SQ is degraded by bacteria6,7. However, despite evidence for at least three different degradative pathways in bacteria6,7,8, no enzymic reaction or gene in any pathway has been defined, although a sulphoglycolytic pathway has been proposed7. Here we show that Escherichia coli K-12, the most widely studied prokaryotic model organism, performs sulphoglycolysis, in addition to standard glycolysis. SQ is catabolised through four newly discovered reactions that we established using purified, heterologously expressed enzymes: SQ isomerase, 6-deoxy-6-sulphofructose (SF) kinase, 6-deoxy-6-sulphofructose-1-phosphate (SFP) aldolase, and 3-sulpholactaldehyde (SLA) reductase. The enzymes are encoded in a ten-gene cluster, which probably also encodes regulation, transport and degradation of the whole sulpholipid; the gene cluster is present in almost all (>91%) available E. coli genomes, and is widespread in Enterobacteriaceae. The pathway yields dihydroxyacetone phosphate (DHAP), which powers energy conservation and growth of E. coli, and the sulphonate product 2,3-dihydroxypropane-1-sulphonate (DHPS), which is excreted. DHPS is mineralized by other bacteria, thus closing the sulphur cycle within a bacterial community.
    路径,目前尚未有细菌被完全鉴定。这项研究表明,大肠杆菌K-12是最广泛研究的原核生物模型,它能够进行硫代糖酵解以及标准的糖酵解。一个十基因簇编码了将硫代葡萄糖酸降解为二羟基丙酮磷酸盐所需的所有酶。几乎所有的现有大肠杆菌基因组中都存在相同的基因簇,并且在肠杆菌科中广泛存在。作者认为,这种新定义的途径可能代表了生物地球化学硫循环的重要组成部分,并且可能在所有杂食动物和草食动物的消化道细菌以及植物病原体中发挥重要作用。硫代葡萄糖酸(SQ,6-脱氧-6-硫代葡萄糖)作为植物硫脂的极性头部组,在所有高等植物、苔藓、蕨类、藻类和大多数光合细菌的光合膜中已有50年的历史。它也存在于一些非光合细菌中,并且SQ是某些古细菌表面层的一部分。SQ的年产量估计为100亿吨(1000000000000吨),因此它构成了自然界中有机硫的主要部分,其中SQ被细菌降解。然而,尽管有证据表明至少存在三种不同的降解路径,目前尚未有细菌被完全鉴定。这项研究表明,大肠杆菌K-12是最广泛研究的原核生物模型,它能够进行硫代糖酵解以及标准的糖酵解
  • YihQ is a sulfoquinovosidase that cleaves sulfoquinovosyl diacylglyceride sulfolipids
    作者:Gaetano Speciale、Yi Jin、Gideon J Davies、Spencer J Williams、Ethan D Goddard-Borger
    DOI:10.1038/nchembio.2023
    日期:2016.4
    YihQ hydrolyzes the glycosidic linkage in sulfoquinovosyl diacylglyceride (SQDG) to form sulfoquinovose (SQ). Crystal structure analysis reveals active site residues required for the specificity of YihQ for SQ and allows the identification of other YihQ homologs. Sulfoquinovose is produced by photosynthetic organisms at a rate of 1010 tons per annum and is degraded by bacteria as a source of carbon and sulfur. We have identified Escherichia coli YihQ as the first dedicated sulfoquinovosidase and the gateway enzyme to sulfoglycolytic pathways. Structural and mutagenesis studies unveiled the sequence signatures for binding the distinguishing sulfonate residue and revealed that sulfoquinovoside degradation is widespread across the tree of life.
    YihQ 可水解磺基喹诺酮糖二酰甘油(SQDG)中的糖苷键,形成磺基喹诺酮糖(SQ)。晶体结构分析揭示了 YihQ 对 SQ 的特异性所需的活性位点残基,并可确定其他 YihQ 同源物。 磺基喹诺酮糖由光合生物以每年 1010 吨的速度产生,并作为碳和硫的来源被细菌降解。我们发现大肠杆菌 YihQ 是第一个专用的磺基喹诺酮糖苷酶,也是通往硫代糖苷途径的关口酶。结构和诱变研究揭示了与不同磺酸残基结合的序列特征,并揭示了磺基喹诺酮苷的降解在生命树中广泛存在。
查看更多