Broadening Deoxysugar Glycodiversity: Natural and Engineered Transaldolases Unlock a Complementary Substrate Space
作者:Madhura Rale、Sarah Schneider、Georg A. Sprenger、Anne K. Samland、Wolf-Dieter Fessner
DOI:10.1002/chem.201002942
日期:2011.2.25
inaccessible by available enzymes, from a [3×8] substrate matrix. Although aliphatic and hydroxylated aliphatic aldehydes were good substrates, D‐lactaldehyde was found to be an inhibitor possibly as a consequence of inactive substrate binding to the catalytic Lys residue. A 1‐hydroxy‐2‐alkanone moiety was identified as a common requirement for the donor substrate, whereas propanone and butanone were inactive
大多数原核药物以糖基化形式生产,糖部分的脱氧水平对药物的生物特性具有深远的影响。由于需要繁琐的保护基操作,化学脱氧具有挑战性。对于碳糖化直接从头产生脱氧糖的生物催化,并通过选择酶和醛醇成分确定对脱氧位点的区域控制,我们研究了转醛醇酶B的F178Y突变体,TalB F178Y和果糖6-磷酸醛缩酶的底物范围。,FSA,来自大肠杆菌分别作为醛醇受体和给体对各种脱氧的醛和酮进行反应。独立的衬底结构的,两种酶催化导致的立体有择碳连接d -苏式构型。结合使用这些酶,可以从[3×8]底物基质中制备出24种脱氧酮糖型产品中的22种,其中许多酶无法利用。尽管脂族和羟基脂族醛是良好的底物,但D丙醛被发现是抑制剂,可能是由于底物与催化的Lys残基无活性结合所致。1-羟基-2-烷酮部分被确定是供体底物的常见要求,而丙酮和丁酮则没有活性。对于涉及二羟基丙烷的反应,TalB F178Y被证明是优良的催化剂,而对于涉及