作者:Amit S. Kalgutkar、Brenda C. Crews、Sam Saleh、Daniel Prudhomme、Lawrence J. Marnett
DOI:10.1016/j.bmc.2005.07.073
日期:2005.12
Previous studies from our laboratory have revealed that esterification/amidation of the carboxylic acid moiety in the nonsteroidal anti-inflammatory drug, indomethacin, generates potent and selective COX-2 inhibitors. In the present study, a series of reverse ester/amide derivatives were synthesized and evaluated as selective COX-2 inhibitors. Most of the reverse esters/amides displayed time-dependent COX-2 inhibition with IC50 values in the low nanomolar range. Replacement of the 4-chlorobenzoyl group on the indole nitrogen with a 4-bromobenzyl moiety resulted in compounds that retained selective COX-2 inhibitory potency. In addition to inhibiting COX-2 activity in vitro, the reverse esters/amides also inhibited COX-2 activity in the mouse macrophage-like cell line, RAW264.7. Overall, this strategy broadens the scope of our previous methodology of neutralizing the carboxylic acid group in NSAIDs as a means of generating COX-2-selective inhibitors and is potentially applicable to other NSAIDs. (c) 2005 Elsevier Ltd. All rights reserved.