Polymer anchored ruthenium complex: A highly active and recyclable catalyst for one-pot azide–alkyne cycloaddition and transfer-hydrogenation of ketones under mild conditions
作者:Rostam Ali Molla、Anupam Singha Roy、Kajari Ghosh、Noor Salam、Md Asif Iqubal、K. Tuhina、Sk Manirul Islam
DOI:10.1016/j.jorganchem.2014.11.007
日期:2015.1
catalyst. Aromatic ketones have been converted to their corresponding alcohols using the polymer supported Ru(III) catalyst. The effects of solvents, reaction time, catalyst amount for the azide–alkynecycloaddition reaction and transfer-hydrogenation reaction were studied. This catalyst showed excellent catalytic activity and recyclability. The polymer supported Ru(III) catalyst could be easily recovered
Multicomponent click reactions catalysed by copper(I) oxide nanoparticles (Cu2ONPs) derived using Oryza sativa
作者:Randhir Rai、Dillip Kumar Chand
DOI:10.1007/s12039-020-01774-5
日期:2020.12
found to be effectively stabilizing the nanoparticles from agglomeration. Optical and microscopic techniques were suitably employed for the characterization of the nanoparticles of approximately 10 nm size. Furthermore, the specifically generated nanoparticles were found to be active catalysts in an aqueous medium for Azide-alkyne Huisgen cycloaddition (Click reaction) under base free condition via one-pot
Cyclometalated Mono- and Dinuclear Ir<sup>III</sup>Complexes with “Click”-Derived Triazoles and Mesoionic Carbenes
作者:Ramananda Maity、Stephan Hohloch、Cheng-Yong Su、Margarethe van der Meer、Biprajit Sarkar
DOI:10.1002/chem.201402838
日期:2014.8.4
here mono‐ and dinuclear IrIII complexes with “click”‐derived 1,2,3‐triazole and 1,2,3‐triazol‐5‐ylidene ligands, in which the wingtip phenyl groups in the aforementioned ligands are additionally orthometalated and bind as carbanionic donors to the IrIII centers. Structural characterization of the complexes reveal a piano stool‐type of coordination around the metal centers with the “click”‐derived ligands
通常在Ir III中心进行正金属化很容易,并且这种正金属化的配合物通常显示出吸引人的电子和催化性能。通过使用中心苯环作为CH活化位点,我们在这里展示了具有“点击”衍生的1,2,3-三唑和1,2,3-三唑-5-亚萘基配体的单核和双核Ir III配合物,其中上述配体中的翼尖苯基另外被正金属化并作为碳负离子供体结合到Ir III中心。配合物的结构表征揭示了钢琴凳子在金属中心周围的配位形式,以及“喀哒”或“ C ^ C”供体与“ Ir III ”结合的“喀哒”衍生的配体中心。此外,虽然在1,2,3-三唑配体中发现了键的定位,但在它们的1,2,3-三唑-5-亚萘基配体中发现了更局域化的情况。所有的配合物都经过催化测试,以检测苯甲醛和苯乙酮的转移氢化作用。事实证明,双核复合物比单核复合物更具活性。我们在这里提供了稳定的,纯的,纯净的双核环金属化的Ir III配合物的实例,该配合物具有聚-mesoionic-carbene配体。
Hydrosoluble Cu(<scp>i</scp>)-DAPTA complexes: synthesis, characterization, luminescence thermochromism and catalytic activity for microwave-assisted three-component azide–alkyne cycloaddition click reaction
作者:Abdallah G. Mahmoud、M. Fátima C. Guedes da Silva、Jerzy Sokolnicki、Piotr Smoleński、Armando J. L. Pombeiro
DOI:10.1039/c8dt01232f
日期:——
catalysts for the one-pot microwave assisted three-component (terminal alkyne, organic halide and NaN3) Huisgen cycloaddition reaction in aqueous media to afford the corresponding disubstituted triazoles. The catalysis proceeds with a broad alkyne substrate scope and according to “click rules”. Photophysical studies of compound 4 showed an unusual reversible thermochromic behaviour exhibiting a blue
新的水溶性和空气稳定的卤化铜(I)化合物,即。[CuX(DAPTA)3 ](1)和(2),以及[Cu(μ-X)(DAPTA)2 ] 2(3)和(4)(X = Br或I,按此顺序)通过在温和的条件下使卤化铜(I)(即溴化物或碘化物)与3,7-二乙酰基-1,3,7-三氮杂-5-磷杂双环[3.3.1]壬烷(DAPTA)反应制得。它们代表了带有DAPTA配体的Cu(I)卤化物配合物的第一个实例,这些元素已通过元素分析,IR,1 H,13 C 1 H}和31 P 1 H} NMR光谱,ESI-MS +,对于4,也通过单晶X射线衍射(SCXRD)分析。配合物1-4是在水介质中一锅微波辅助的三组分(末端炔烃,有机卤化物和NaN 3)Huisgen环加成反应的有效催化剂,以提供相应的二取代三唑。根据“点击规则”,催化在较宽的炔烃底物范围内进行。化合物4的光物理研究表明,由于卤化物到配体的电荷转移,在298
Copper complexes bearing C-scorpionate ligands: Synthesis, characterization and catalytic activity for azide-alkyne cycloaddition in aqueous medium
作者:Abdallah G. Mahmoud、Luísa M.D.R.S. Martins、M. Fátima C. Guedes da Silva、Armando J.L. Pombeiro
DOI:10.1016/j.ica.2018.08.052
日期:2018.11
sodium azide) cycloaddition reaction (CuAAC) to afford 1,4-disubstituted-1,2,3-triazoles, with 7 as the best catalyst. The catalytic reaction evolves well in ROH/H2O solution, depends on the R group and proceeds better when R = Me, here achieving yields up to 94%. The alcohol plays a role in the Cu(II)-to-Cu(I) Glaser-type induction period, therefore avoiding a reducing agent in the system.