Dihydropyrimidine calcium channel blockers: 2-heterosubstituted 4-aryl-1,4-dihydro-6-methyl-5-pyrimidinecarboxylic acid esters as potent mimics of dihydropyridines
摘要:
2-Heterosubstituted-4-aryl-1,4-dihydro-6-methyl-5-pyrimidinecar box ylic acid esters 8, which lack the potential CS symmetry of dihydropyridine calcium channel blockers, were prepared and evaluated for biological activity. Biological assays using potassium-depolarized rabbit aorta and radioligand binding techniques showed that some of these compounds are potent mimics of dihydropyridine calcium channel blockers. The combination of a branched ester (e.g. isopropyl, sec-butyl) and an alkylthio group (e.g. SMe) was found to be optimal for biological activity. When compared directly with similarly substituted 2-heteroalkyldihydropyridines 9, dihydropyrimidines 8 were found to be 30-fold less active. The solid-state structure of dihydropyrimidine analogue 8g shows that these compounds can adopt a molecular conformation which is similar to the reported conformation of dihydropyridine calcium channel blockers.
Dihydropyrimidine calcium channel blockers: 2-heterosubstituted 4-aryl-1,4-dihydro-6-methyl-5-pyrimidinecarboxylic acid esters as potent mimics of dihydropyridines
作者:Karnail S. Atwal、George C. Rovnyak、Joseph Schwartz、Suzanne Moreland、Anders Hedberg、Jack Z. Gougoutas、Mary F. Malley、David M. Floyd
DOI:10.1021/jm00167a035
日期:1990.5
2-Heterosubstituted-4-aryl-1,4-dihydro-6-methyl-5-pyrimidinecar box ylic acid esters 8, which lack the potential CS symmetry of dihydropyridine calcium channel blockers, were prepared and evaluated for biological activity. Biological assays using potassium-depolarized rabbit aorta and radioligand binding techniques showed that some of these compounds are potent mimics of dihydropyridine calcium channel blockers. The combination of a branched ester (e.g. isopropyl, sec-butyl) and an alkylthio group (e.g. SMe) was found to be optimal for biological activity. When compared directly with similarly substituted 2-heteroalkyldihydropyridines 9, dihydropyrimidines 8 were found to be 30-fold less active. The solid-state structure of dihydropyrimidine analogue 8g shows that these compounds can adopt a molecular conformation which is similar to the reported conformation of dihydropyridine calcium channel blockers.