摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

keto-(2-13C)-D-xylulose

中文名称
——
中文别名
——
英文名称
keto-(2-13C)-D-xylulose
英文别名
D-[2-(13)C]-xylulose;D-[2-13C]xylulose;(3S,4R)-1,3,4,5-tetrahydroxy(213C)pentan-2-one
keto-(2-13C)-D-xylulose化学式
CAS
——
化学式
C5H10O5
mdl
——
分子量
151.12
InChiKey
ZAQJHHRNXZUBTE-OALKFFQMSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -2.6
  • 重原子数:
    10
  • 可旋转键数:
    4
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.8
  • 拓扑面积:
    98
  • 氢给体数:
    4
  • 氢受体数:
    5

反应信息

  • 作为反应物:
    描述:
    keto-(2-13C)-D-xylulose重水 为溶剂, 生成 α-D-threo-(2-13C)-2-pentulofuranose 、 β-D-threo-(2-13C)-2-pentulofuranose
    参考文献:
    名称:
    Furanose ring anomerization: kinetic and thermodynamic studies of the d-2-pentuloses by 13C-n.m.r. spectroscopy
    摘要:
    The tautomeric compositions of D-erythro-2-pentulose (D-ribulose) and D-threo-2-pentulose (D-xylulose) in aqueous solution have been studied by 13C-n.m.r. spectroscopy at various temperatures using 2-13C-substituted compounds. The alpha-furanose, beta-furanose, and acyclic carbonyl (keto) forms were detected at all temperatures, whereas the acyclic hydrate (gem-diol) form was not observed. The percentage of keto form increased with increasing temperature, at the expense of the furanose forms. Thermodynamic (delta G0, delta H0, delta S0) and kinetic parameters for the interconversion of alpha- and beta-furanoses with the acyclic carbonyl form were determined and compared with those determined under similar conditions for the structurally-related aldotetrofuranoses. The ring-opening rate constant (kopen) measured by 13C saturation-transfer n.m.r. spectroscopy in 50mM sodium acetate (pH 4.0) at 55 degrees were as follows: beta-threofuranose (0.65 s-1) greater than alpha-erythrofuranose (0.51 s-1) greater than beta-erythrofuranose (0.37 s-1) approximately beta-threo-2-pentulofuranose (0.35 s-1) greater than alpha-threofuranose (0.25 s-1) greater than alpha-threo-2-pentulofuranose (0.20 s-1) approximately alpha-erythro-2-pentulofuranose (0.18 s-1) approximately beta-erythro-2-pentulofuranose (0.18 s-1). Within each structural type the pentulofuranose anomer having O-2 and O-3 cis (O-1 and O-2 cis in aldotetrofuranoses) opens faster than, or at a similar rate to, the alternative anomer having these oxygen atoms trans. Ring-closing rate constants (kclose), calculated from kopen and Keq, decrease in the order beta-erythrofuranose (15 s-1) greater than beta-threofuranose (12 s-1) greater than alpha-erythrofuranose (9.9 s-1) greater than alpha-threofuranose (6.2 s-1) greater than beta-threo-2-pentulofuranose (0.71 s-1) greater than alpha-erythro-2-pentulofuranose (0.38 s-1) greater than alpha-threo-2-pentulofuranose (0.13 s-1) approximately beta-erythro-2-pentulofuranose (0.13 s-1). Replacement of H-1 in aldotetrofuranoses by a hydroxymethyl group (i.e., conversion to 2-pentuloses) significantly decreases the ring-opening and ring-closing rate constants of furanose anomerization.
    DOI:
    10.1016/0008-6215(90)84001-b
  • 作为产物:
    描述:
    β-D-threo-(2-13C)-2-pentulofuranose 以 重水 为溶剂, 生成 α-D-threo-(2-13C)-2-pentulofuranose 、 keto-(2-13C)-D-xylulose
    参考文献:
    名称:
    Furanose ring anomerization: kinetic and thermodynamic studies of the d-2-pentuloses by 13C-n.m.r. spectroscopy
    摘要:
    The tautomeric compositions of D-erythro-2-pentulose (D-ribulose) and D-threo-2-pentulose (D-xylulose) in aqueous solution have been studied by 13C-n.m.r. spectroscopy at various temperatures using 2-13C-substituted compounds. The alpha-furanose, beta-furanose, and acyclic carbonyl (keto) forms were detected at all temperatures, whereas the acyclic hydrate (gem-diol) form was not observed. The percentage of keto form increased with increasing temperature, at the expense of the furanose forms. Thermodynamic (delta G0, delta H0, delta S0) and kinetic parameters for the interconversion of alpha- and beta-furanoses with the acyclic carbonyl form were determined and compared with those determined under similar conditions for the structurally-related aldotetrofuranoses. The ring-opening rate constant (kopen) measured by 13C saturation-transfer n.m.r. spectroscopy in 50mM sodium acetate (pH 4.0) at 55 degrees were as follows: beta-threofuranose (0.65 s-1) greater than alpha-erythrofuranose (0.51 s-1) greater than beta-erythrofuranose (0.37 s-1) approximately beta-threo-2-pentulofuranose (0.35 s-1) greater than alpha-threofuranose (0.25 s-1) greater than alpha-threo-2-pentulofuranose (0.20 s-1) approximately alpha-erythro-2-pentulofuranose (0.18 s-1) approximately beta-erythro-2-pentulofuranose (0.18 s-1). Within each structural type the pentulofuranose anomer having O-2 and O-3 cis (O-1 and O-2 cis in aldotetrofuranoses) opens faster than, or at a similar rate to, the alternative anomer having these oxygen atoms trans. Ring-closing rate constants (kclose), calculated from kopen and Keq, decrease in the order beta-erythrofuranose (15 s-1) greater than beta-threofuranose (12 s-1) greater than alpha-erythrofuranose (9.9 s-1) greater than alpha-threofuranose (6.2 s-1) greater than beta-threo-2-pentulofuranose (0.71 s-1) greater than alpha-erythro-2-pentulofuranose (0.38 s-1) greater than alpha-threo-2-pentulofuranose (0.13 s-1) approximately beta-erythro-2-pentulofuranose (0.13 s-1). Replacement of H-1 in aldotetrofuranoses by a hydroxymethyl group (i.e., conversion to 2-pentuloses) significantly decreases the ring-opening and ring-closing rate constants of furanose anomerization.
    DOI:
    10.1016/0008-6215(90)84001-b
点击查看最新优质反应信息

文献信息

  • Phosphate-Catalyzed Degradation of <scp>d</scp>-Glucosone in Aqueous Solution Is Accompanied by C1–C2 Transposition
    作者:Wenhui Zhang、Anthony S. Serianni
    DOI:10.1021/ja3020296
    日期:2012.7.18
    instead initially undergoes C1-C2 bond cleavage to yield d-ribulose 3 and formate. The latter bond cleavage occurs via a 1,3-dicarbonyl intermediate initially produced by enolization at C3 of 2. However, a careful monitoring of the fates of the sketetal carbons of 2 during its conversion to 3 revealed unexpectedly that C1-C2 bond cleavage is accompanied by C1-C2 transposition in about 1 out of every
    C(6) 1,2-二羰基糖 (osone) D-葡萄糖酮 2 (D-arabino-hexos-2-ulose) 在 pH 7.5 和 37 °C 的水性磷酸盐缓冲液中的降解途径已被研究过 ( 13)C 和 (1)H NMR 光谱,使用单和双 (13)C 标记的 2 同位素异构体。与其 3-脱氧类似物不同,3-脱氧-D-葡萄糖酮(3-脱氧-D-赤型- hexos-2-ulose) (1), 2 不会通过 1,2- 氢转移机制降解,而是最初进行 C1-C2 键断裂以产生 d-核酮糖 3 和甲酸。后一种键断裂是通过最初由 2 的 C3 上的烯醇化产生的 1,3-二羰基中间体发生的。然而,在其转化为 3 期间仔细监测 2 的骨架碳的命运,意外地发现 C1-C2 键断裂是每 10 次转换中约有 1 次伴有 C1-C2 转座。此外,2 的降解由无机磷酸盐 (P(i)) 和 P(i)-替代物砷酸盐催化。在
  • Furanose ring anomerization: kinetic and thermodynamic studies of the d-2-pentuloses by 13C-n.m.r. spectroscopy
    作者:Jian Wu、Anthony S. Serianni、Tapani Vuorinen
    DOI:10.1016/0008-6215(90)84001-b
    日期:1990.9
    The tautomeric compositions of D-erythro-2-pentulose (D-ribulose) and D-threo-2-pentulose (D-xylulose) in aqueous solution have been studied by 13C-n.m.r. spectroscopy at various temperatures using 2-13C-substituted compounds. The alpha-furanose, beta-furanose, and acyclic carbonyl (keto) forms were detected at all temperatures, whereas the acyclic hydrate (gem-diol) form was not observed. The percentage of keto form increased with increasing temperature, at the expense of the furanose forms. Thermodynamic (delta G0, delta H0, delta S0) and kinetic parameters for the interconversion of alpha- and beta-furanoses with the acyclic carbonyl form were determined and compared with those determined under similar conditions for the structurally-related aldotetrofuranoses. The ring-opening rate constant (kopen) measured by 13C saturation-transfer n.m.r. spectroscopy in 50mM sodium acetate (pH 4.0) at 55 degrees were as follows: beta-threofuranose (0.65 s-1) greater than alpha-erythrofuranose (0.51 s-1) greater than beta-erythrofuranose (0.37 s-1) approximately beta-threo-2-pentulofuranose (0.35 s-1) greater than alpha-threofuranose (0.25 s-1) greater than alpha-threo-2-pentulofuranose (0.20 s-1) approximately alpha-erythro-2-pentulofuranose (0.18 s-1) approximately beta-erythro-2-pentulofuranose (0.18 s-1). Within each structural type the pentulofuranose anomer having O-2 and O-3 cis (O-1 and O-2 cis in aldotetrofuranoses) opens faster than, or at a similar rate to, the alternative anomer having these oxygen atoms trans. Ring-closing rate constants (kclose), calculated from kopen and Keq, decrease in the order beta-erythrofuranose (15 s-1) greater than beta-threofuranose (12 s-1) greater than alpha-erythrofuranose (9.9 s-1) greater than alpha-threofuranose (6.2 s-1) greater than beta-threo-2-pentulofuranose (0.71 s-1) greater than alpha-erythro-2-pentulofuranose (0.38 s-1) greater than alpha-threo-2-pentulofuranose (0.13 s-1) approximately beta-erythro-2-pentulofuranose (0.13 s-1). Replacement of H-1 in aldotetrofuranoses by a hydroxymethyl group (i.e., conversion to 2-pentuloses) significantly decreases the ring-opening and ring-closing rate constants of furanose anomerization.
查看更多