Cyclometalated Iridium(III) Complexes Based on Phenyl-Imidazole Ligand
摘要:
Phenyl-imidazole-based ligands with various substitution patterns have been used as the main ligand for heteroleptic bis-cyclometalated Iridium complexes. Two series of complexes have been prepared and their photophysical and electrochemical properties were studied. The phosphorescence emission maxima range from about 490 to 590 nm, that is, from greenish-blue to orange. The first series is of the form Ir(L)(2)(acac) (L: a phenyl-imidazole based ligand; acac: acetylacetonate). In the first complex, la, L is 1,4,5-trimethyl-2-phenyl-1H-imidazole. Then, methyl groups are replaced with phenyl groups and chlorines are grafted on the cyclometalated phenyl ring. The second series is of the form Ir(4,5-dimethyl-1,2-diphenyl-1H-imidazole)(2)(L-a) (L-a: ancillary ligand being acetylacetonate, acac, N,N-dimethylamir o-picolinate, NPic, picolinate, Pic, or 2-(diphenylphosphino)acetic acid, P). These series show that modifying the substitution pattern on the ligands can alter the photophysical and electrochemical properties of the complexes. Overall, we show that compared to complexes containing phenyl-pyridine ligands, highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) are more delocalized over the entire main ligand in complexes containing phenyl-imidazole. Contrary to expectations, when chlorine atoms are used as strong acceptor substituents on the orthometalated phenyl, a red shift of the emission is observed. This behavior has been rationalized using theoretical calculations on the excited state of the chloro-substituted complex 3a compared to the model 1a.
Cyclometalated Iridium(III) Complexes Based on Phenyl-Imidazole Ligand
摘要:
Phenyl-imidazole-based ligands with various substitution patterns have been used as the main ligand for heteroleptic bis-cyclometalated Iridium complexes. Two series of complexes have been prepared and their photophysical and electrochemical properties were studied. The phosphorescence emission maxima range from about 490 to 590 nm, that is, from greenish-blue to orange. The first series is of the form Ir(L)(2)(acac) (L: a phenyl-imidazole based ligand; acac: acetylacetonate). In the first complex, la, L is 1,4,5-trimethyl-2-phenyl-1H-imidazole. Then, methyl groups are replaced with phenyl groups and chlorines are grafted on the cyclometalated phenyl ring. The second series is of the form Ir(4,5-dimethyl-1,2-diphenyl-1H-imidazole)(2)(L-a) (L-a: ancillary ligand being acetylacetonate, acac, N,N-dimethylamir o-picolinate, NPic, picolinate, Pic, or 2-(diphenylphosphino)acetic acid, P). These series show that modifying the substitution pattern on the ligands can alter the photophysical and electrochemical properties of the complexes. Overall, we show that compared to complexes containing phenyl-pyridine ligands, highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) are more delocalized over the entire main ligand in complexes containing phenyl-imidazole. Contrary to expectations, when chlorine atoms are used as strong acceptor substituents on the orthometalated phenyl, a red shift of the emission is observed. This behavior has been rationalized using theoretical calculations on the excited state of the chloro-substituted complex 3a compared to the model 1a.
Catalyst-Free One-Pot Four Component Synthesis of Polysubstituted Imidazoles in Neutral Ionic Liquid 1-Butyl-3-methylimidazolium Bromide
作者:Alireza Hasaninejad、Abdolkarim Zare、Mohsen Shekouhy、Javad Ameri Rad
DOI:10.1021/cc100097m
日期:2010.11.8
A catalyst-freeone-pot four component methodology for the synthesis of 1,2,4,5-substituted imidazoles under conventional heating and microwaveirradiationusing 1-butyl-3-methylimidazolium bromide, [Bmim]Br, as a neutral reaction media is described. A broad range of structurally diverse aldehydes (aromatic aldehydes bearing electron withdrawing and/or electron releasing groups as well as heteroaromatic
A series of novel six iridium complexes (1–6) bearing two substituted phenylimidazole and an additional acetylacetone as the third co-auxilary ligand are reported. The lowest absorption band for all iridium complexes consist of a mixture of heavy atom Ir(III) enhanced 3MLCT and 3 π-π* transitions and the phosphorescent peak wavelength can be fine-tuned to cover the spectral range 455–518 nm with high quantum efficiencies. The peak wavelength of the dopants can be finely tuned depending upon the electronic properties of the substituents. On the basis of onset potentials of the oxidation and reduction, the HOMO-LUMO energies were calculated and the reported iridium complexes emit green light with exceeding higher efficiency.
Some novel imidazole derivatives were developed for highly sensitive chemisensors for transition metal ions. Since these compounds are sensitive to different external stimulations such as UV irradiation, heat, increasing pressure and changing the environmental pH causing colour change and so they can be used as a ′multi-way′ optically switchable material. A prominent fluorescence enhancement was found
An object of the present invention is to provide an organic electroluminescence device having excellent light emission efficiency and durability, in particular, durability when driving at a high temperature. Provided is an organic electroluminescence device including on a substrate a pair of electrodes, and at least one layer of an organic layer including a light emitting layer containing a light emitting material disposed between the electrodes, wherein the light emitting layer includes at least each one of specific indolocarbazole derivatives and specific condensed ring metal complexes.