Design, synthesis and biological evaluation of quinoline amide derivatives as novel VEGFR-2 inhibitors
摘要:
Vascular endothelial growth factor receptor-2 (VEGFR-2) plays a crucial role in the process of cancer angiogenesis. A series of quinoline amide derivatives were prepared and found to be good inhibitors of VEGFR-2. The inhibitory activities were investigated against VEGFR-2 kinase and human umbilical vein endothelial cells (HUVEC) in vitro. Compound 6 (5-chloro-2-hydroxy-N-(quinolin-8-yl)benzamide) exhibited the most potent inhibitory activity (IC(50) = 3.8 and 5.5 nM for VEGFR-2 kinase and HUVEC, respectively). Docking simulation supported the initial pharmacophoric hypothesis and suggested a common mode of interaction at the ATP-binding site of VEGFR-2, which demonstrates that compound 6 is a potential agent for cancer therapy deserving further researching. (C) 2010 Elsevier Ltd. All rights reserved.
A nickel-catalyzed hydrogen isotope exchange has been developed with acetone-d6 as the deuterium source. The reaction showed an improved kinetic feature of H/D exchange under the assistance of 2-pyridones, efficiently affording regioselective labeled aryl and alkyl carboxamides.
protocol for PhI(OAc)2 oxidation halogenation of quinoline at the C5 position was developed, affording the desired remote C–H activation products in moderate to excellent yields. This reaction proceeds with copperhalides as the halogenating reagent to afford the halogenated quinolines and features excellent substrate tolerance, providing a facile pathway for the C5 halogenation of quinoline.
Vascular endothelial growth factor receptor-2 (VEGFR-2) plays a crucial role in the process of cancer angiogenesis. A series of quinoline amide derivatives were prepared and found to be good inhibitors of VEGFR-2. The inhibitory activities were investigated against VEGFR-2 kinase and human umbilical vein endothelial cells (HUVEC) in vitro. Compound 6 (5-chloro-2-hydroxy-N-(quinolin-8-yl)benzamide) exhibited the most potent inhibitory activity (IC(50) = 3.8 and 5.5 nM for VEGFR-2 kinase and HUVEC, respectively). Docking simulation supported the initial pharmacophoric hypothesis and suggested a common mode of interaction at the ATP-binding site of VEGFR-2, which demonstrates that compound 6 is a potential agent for cancer therapy deserving further researching. (C) 2010 Elsevier Ltd. All rights reserved.