摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-chloro-N,N-dipentyl-3-methylquinoline-4-carboxamide | 1026652-32-3

中文名称
——
中文别名
——
英文名称
2-chloro-N,N-dipentyl-3-methylquinoline-4-carboxamide
英文别名
2-chloro-3-methyl-N,N-dipentylquinoline-4-carboxamide
2-chloro-N,N-dipentyl-3-methylquinoline-4-carboxamide化学式
CAS
1026652-32-3
化学式
C21H29ClN2O
mdl
——
分子量
360.927
InChiKey
OKMODXSYCVFJEW-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    519.2±50.0 °C(predicted)
  • 密度:
    1.085±0.06 g/cm3(Temp: 20 °C; Press: 760 Torr)(predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    6.6
  • 重原子数:
    25
  • 可旋转键数:
    9
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.52
  • 拓扑面积:
    33.2
  • 氢给体数:
    0
  • 氢受体数:
    2

反应信息

  • 作为反应物:
    描述:
    2-chloro-N,N-dipentyl-3-methylquinoline-4-carboxamideN-甲基哌嗪 反应 3.5h, 以83%的产率得到3-Methyl-2-(4-methyl-piperazin-1-yl)-quinoline-4-carboxylic acid dipentylamide
    参考文献:
    名称:
    Further Studies on the Interaction of the 5-Hydroxytryptamine3 (5-HT3) Receptor with Arylpiperazine Ligands. Development of a New 5-HT3 Receptor Ligand Showing Potent Acetylcholinesterase Inhibitory Properties
    摘要:
    Novel arylpiperazine derivatives bearing lipophilic probes were designed, synthesized, and evaluated for their potential ability to interact with the 5-hydroxytryptamine(3) (5-HT3) receptor. Most of the new compounds show subnanomolar 5-HT3 receptor affinity. Ester 6bc showing a picomolar K-i value is one of the most potent 5-HT3 receptor ligands so far synthesized. The structure-affinity relationship study suggests the existence of a certain degree of conformational freedom of the amino acid residues interacting with the substituents in positions 3 and 4 of the quipazine quinoline nucleus. Thus, the tacrine-related heterobivalent ligand 6o was designed in an attempt to capitalize on the evidence of such a steric tolerance. Compound 6o shows a nanomolar potency for both the 5-HT3 receptor and the human AChE and represents the first example of a rationally designed high-affinity 5-HT3 receptor ligand showing nanomolar AChE inhibitory activity. Finally, the computational analysis performed on compound 6o allowed the rationalization of the structure-energy determinants for AChE versus BuChE selectivity and revealed the existence of a subsite at the boundary of the 5-HT3 receptor extracellular domain, which could represent a "peripheral" site similar to that evidenced in the AChE gorge.
    DOI:
    10.1021/jm0493461
  • 作为产物:
    参考文献:
    名称:
    Further Studies on the Interaction of the 5-Hydroxytryptamine3 (5-HT3) Receptor with Arylpiperazine Ligands. Development of a New 5-HT3 Receptor Ligand Showing Potent Acetylcholinesterase Inhibitory Properties
    摘要:
    Novel arylpiperazine derivatives bearing lipophilic probes were designed, synthesized, and evaluated for their potential ability to interact with the 5-hydroxytryptamine(3) (5-HT3) receptor. Most of the new compounds show subnanomolar 5-HT3 receptor affinity. Ester 6bc showing a picomolar K-i value is one of the most potent 5-HT3 receptor ligands so far synthesized. The structure-affinity relationship study suggests the existence of a certain degree of conformational freedom of the amino acid residues interacting with the substituents in positions 3 and 4 of the quipazine quinoline nucleus. Thus, the tacrine-related heterobivalent ligand 6o was designed in an attempt to capitalize on the evidence of such a steric tolerance. Compound 6o shows a nanomolar potency for both the 5-HT3 receptor and the human AChE and represents the first example of a rationally designed high-affinity 5-HT3 receptor ligand showing nanomolar AChE inhibitory activity. Finally, the computational analysis performed on compound 6o allowed the rationalization of the structure-energy determinants for AChE versus BuChE selectivity and revealed the existence of a subsite at the boundary of the 5-HT3 receptor extracellular domain, which could represent a "peripheral" site similar to that evidenced in the AChE gorge.
    DOI:
    10.1021/jm0493461
点击查看最新优质反应信息

文献信息

  • Further Studies on the Interaction of the 5-Hydroxytryptamine<sub>3</sub> (5-HT<sub>3</sub>) Receptor with Arylpiperazine Ligands. Development of a New 5-HT<sub>3</sub> Receptor Ligand Showing Potent Acetylcholinesterase Inhibitory Properties
    作者:Andrea Cappelli、Andrea Gallelli、Monica Manini、Maurizio Anzini、Laura Mennuni、Francesco Makovec、M. Cristina Menziani、Stefano Alcaro、Francesco Ortuso、Salvatore Vomero
    DOI:10.1021/jm0493461
    日期:2005.5.1
    Novel arylpiperazine derivatives bearing lipophilic probes were designed, synthesized, and evaluated for their potential ability to interact with the 5-hydroxytryptamine(3) (5-HT3) receptor. Most of the new compounds show subnanomolar 5-HT3 receptor affinity. Ester 6bc showing a picomolar K-i value is one of the most potent 5-HT3 receptor ligands so far synthesized. The structure-affinity relationship study suggests the existence of a certain degree of conformational freedom of the amino acid residues interacting with the substituents in positions 3 and 4 of the quipazine quinoline nucleus. Thus, the tacrine-related heterobivalent ligand 6o was designed in an attempt to capitalize on the evidence of such a steric tolerance. Compound 6o shows a nanomolar potency for both the 5-HT3 receptor and the human AChE and represents the first example of a rationally designed high-affinity 5-HT3 receptor ligand showing nanomolar AChE inhibitory activity. Finally, the computational analysis performed on compound 6o allowed the rationalization of the structure-energy determinants for AChE versus BuChE selectivity and revealed the existence of a subsite at the boundary of the 5-HT3 receptor extracellular domain, which could represent a "peripheral" site similar to that evidenced in the AChE gorge.
查看更多