作者:Qinyang Wang、Yupeng Wang、Jingjin Ding、Chunhong Wang、Xuehan Zhou、Wenqing Gao、Huanwei Huang、Feng Shao、Zhibo Liu
DOI:10.1038/s41586-020-2079-1
日期:2020.3.19
Bioorthogonal chemistry capable of operating in live animals is needed to investigate biological processes such as cell death and immunity. Recent studies have identified a gasdermin family of pore-forming proteins that executes inflammasome-dependent and -independent pyroptosis1â5. Pyroptosis is proinflammatory, but its effect on antitumour immunity is unknown. Here we establish a bioorthogonal chemical system, in which a cancer-imaging probe phenylalanine trifluoroborate (Phe-BF3) that can enter cells desilylates and âcleavesâ a designed linker that contains a silyl ether. This system enabled the controlled release of a drug from an antibodyâdrug conjugate in mice. When combined with nanoparticle-mediated delivery, desilylation catalysed by Phe-BF3 could release a client proteinâincluding an active gasderminâfrom a nanoparticle conjugate, selectively into tumour cells in mice. We applied this bioorthogonal system to gasdermin, which revealed that pyroptosis of less than 15% of tumour cells was sufficient to clear the entire 4T1 mammary tumour graft. The tumour regression was absent in immune-deficient mice or upon T cell depletion, and was correlated with augmented antitumour immune responses. The injection of a reduced, ineffective dose of nanoparticle-conjugated gasdermin along with Phe-BF3 sensitized 4T1 tumours to anti-PD1 therapy. Our bioorthogonal system based on Phe-BF3 desilylation is therefore a powerful tool for chemical biology; our application of this system suggests that pyroptosis-induced inflammation triggers robust antitumour immunity and can synergize with checkpoint blockade. In mouse models of cancer, a biorthogonal chemical system based on desilylation catalysed by phenylalanine trifluoroborate enables the controlled release of gasdermin to induce pyroptosis selectively in tumour cells
研究细胞死亡和免疫等生物过程需要能够在活体动物体内运行的生物正交化学。最近的研究发现了一种气孔形成蛋白(gasdermin)家族,它可以执行依赖于炎症体和不依赖于炎症体的热蛋白沉积1â5。裂解酶具有促炎作用,但其对抗肿瘤免疫的影响尚不清楚。在这里,我们建立了一个生物正交化学系统,在这个系统中,癌症成像探针三氟硼酸苯丙氨酸(Phe-BF3)可以进入细胞脱硅,并 "清除 "设计的含有硅基醚的连接体。该系统能在小鼠体内控制抗体药物共轭物中药物的释放。当与纳米颗粒介导的递送相结合时,由Phe-BF3催化的脱硅作用可将客户蛋白(包括活性气敏)从纳米颗粒共轭物中释放出来,选择性地进入小鼠体内的肿瘤细胞。我们将这一生物正交系统应用于gasdermin,结果表明,不到15%的肿瘤细胞的热解足以清除整个4T1乳腺肿瘤移植物。在免疫缺陷小鼠体内或在 T 细胞耗竭的情况下,肿瘤不会消退,这与抗肿瘤免疫反应的增强有关。在注射 Phe-BF3 的同时注射低剂量、无效的纳米颗粒结合物 gasdermin,可使 4T1 肿瘤对抗 PD1 治疗敏感。因此,我们基于 Phe-BF3 脱硅作用的生物正交系统是一种强大的化学生物学工具;我们对这一系统的应用表明,热蛋白沉积诱导的炎症会引发强大的抗肿瘤免疫力,并能与检查点阻断产生协同作用。在癌症小鼠模型中,基于三氟硼酸苯丙氨酸催化的脱硅作用的生物对偶化学系统能够控制释放 gasdermin,从而有选择性地诱导肿瘤细胞发生热蛋白沉积。