synthetic routes. However, prediction (and control) of reaction selectivity is usually challenging, especially for complex substrate structures and elusive transformations such as remote C(sp3)−H oxidation, as it requires distinguishing a specific C−H bond from many others with similar reactivity. Developed here is a strategy for predictable, remote C−H oxidation that entails substrate binding to a supramolecular
可预测性是在合成路线中涵盖后期CH功能化的关键要求。然而,反应选择性的预测(和控制)通常具有挑战性,特别是对于复杂的底物结构和难以实现的转化,例如远程C(sp 3)-H氧化,因为它需要将特定的C-H键与许多具有相似反应性的键区分开。这里开发的是一种可预测的远程CH氧化策略,该策略需要使底物与超分子Mn或Fe催化剂结合,然后通过NMR分析阐明主客体加合物的构象。这些分析表明,在进行反应之前,哪些远程CH键适合用于氧化反应,从而能够预测位点选择性。此策略已应用于后期C(sp3)–H在C15(或C16)位置上的
氨基甾类化合物的氧化,其选择性可通过改变催化剂的手性和
金属来调节。